Cargando…
Tox_(R)CNN: Deep learning-based nuclei profiling tool for drug toxicity screening
Toxicity is an important factor in failed drug development, and its efficient identification and prediction is a major challenge in drug discovery. We have explored the potential of microscopy images of fluorescently labeled nuclei for the prediction of toxicity based on nucleus pattern recognition....
Autores principales: | Jimenez-Carretero, Daniel, Abrishami, Vahid, Fernández-de-Manuel, Laura, Palacios, Irene, Quílez-Álvarez, Antonio, Díez-Sánchez, Alberto, del Pozo, Miguel A., Montoya, María C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291153/ https://www.ncbi.nlm.nih.gov/pubmed/30500821 http://dx.doi.org/10.1371/journal.pcbi.1006238 |
Ejemplares similares
-
TOX 21: New Dimensions of Toxicity Testing
por: Schmidt, Charles W.
Publicado: (2009) -
Study on wastewater toxicity using ToxTrak™ method
por: Liwarska-Bizukojc, Ewa, et al.
Publicado: (2016) -
MitoTox: a comprehensive mitochondrial toxicity database
por: Lin, Yu-Te, et al.
Publicado: (2021) -
ProTox-II: a webserver for the prediction of toxicity of chemicals
por: Banerjee, Priyanka, et al.
Publicado: (2018) -
A deep learning-based tool for the automated detection and analysis of
caveolae in transmission electron microscopy images
por: Aboy-Pardal, María C.M., et al.
Publicado: (2022)