Cargando…
Subject level clustering using a negative binomial model for small transcriptomic studies
BACKGROUND: Unsupervised clustering represents one of the most widely applied methods in analysis of high-throughput ‘omics data. A variety of unsupervised model-based or parametric clustering methods and non-parametric clustering methods have been proposed for RNA-seq count data, most of which perf...
Autores principales: | Li, Qian, Noel-MacDonnell, Janelle R., Koestler, Devin C., Goode, Ellen L., Fridley, Brooke L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292049/ https://www.ncbi.nlm.nih.gov/pubmed/30541426 http://dx.doi.org/10.1186/s12859-018-2556-9 |
Ejemplares similares
-
Assessment of data transformations for model-based clustering of RNA-Seq data
por: Noel-MacDonnell, Janelle R., et al.
Publicado: (2018) -
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017) -
Log-binomial models: exploring failed convergence
por: Williamson, Tyler, et al.
Publicado: (2013) -
NIMBus: a negative binomial regression based Integrative Method for mutation Burden Analysis
por: Zhang, Jing, et al.
Publicado: (2020) -
Metaprop: a Stata command to perform meta-analysis of binomial data
por: Nyaga, Victoria N, et al.
Publicado: (2014)