Cargando…
A comparison of multiple imputation methods for missing data in longitudinal studies
BACKGROUND: Multiple imputation (MI) is now widely used to handle missing data in longitudinal studies. Several MI techniques have been proposed to impute incomplete longitudinal covariates, including standard fully conditional specification (FCS-Standard) and joint multivariate normal imputation (J...
Autores principales: | Huque, Md Hamidul, Carlin, John B., Simpson, Julie A., Lee, Katherine J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292063/ https://www.ncbi.nlm.nih.gov/pubmed/30541455 http://dx.doi.org/10.1186/s12874-018-0615-6 |
Ejemplares similares
-
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023) -
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
por: O’Keeffe, Aidan G., et al.
Publicado: (2016) -
A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2017) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020)