Cargando…

Identification of deleterious and regulatory genomic variations in known asthma loci

BACKGROUND: Candidate gene and genome-wide association studies have identified hundreds of asthma risk loci. The majority of associated variants, however, are not known to have any biological function and are believed to represent markers rather than true causative mutations. We hypothesized that ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Neville, Matthew D. C., Choi, Jihoon, Lieberman, Jonathan, Duan, Qing Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292105/
https://www.ncbi.nlm.nih.gov/pubmed/30541564
http://dx.doi.org/10.1186/s12931-018-0953-2
Descripción
Sumario:BACKGROUND: Candidate gene and genome-wide association studies have identified hundreds of asthma risk loci. The majority of associated variants, however, are not known to have any biological function and are believed to represent markers rather than true causative mutations. We hypothesized that many of these associated markers are in linkage disequilibrium (LD) with the elusive causative variants. METHODS: We compiled a comprehensive list of 449 asthma-associated variants previously reported in candidate gene and genome-wide association studies. Next, we identified all sequence variants located within the 305 unique genes using whole-genome sequencing data from the 1000 Genomes Project. Then, we calculated the LD between known asthma variants and the sequence variants within each gene. LD variants identified were then annotated to determine those that are potentially deleterious and/or functional (i.e. coding or regulatory effects on the encoded transcript or protein). RESULTS: We identified 10,130 variants in LD (r(2) > 0.6) with known asthma variants. Annotations of these LD variants revealed that several have potentially deleterious effects including frameshift, alternate splice site, stop-lost, and missense. Moreover, 24 of the LD variants have been reported to regulate gene expression as expression quantitative trait loci (eQTLs). CONCLUSIONS: This study is proof of concept that many of the genetic loci previously associated with complex diseases such as asthma are not causative but represent markers of disease, which are in LD with the elusive causative variants. We hereby report a number of potentially deleterious and regulatory variants that are in LD with the reported asthma loci. These reported LD variants could account for the original association signals with asthma and represent the true causative mutations at these loci. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12931-018-0953-2) contains supplementary material, which is available to authorized users.