Cargando…
Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy
Magnetic drug targeting (MDT) and magnetic-based drug/cargo delivery are emerging treatment methods which attracting the attention of many researchers for curing different cancers and artery diseases such as atherosclerosis. Herein, computational studies are accomplished by utilizing magnetic approa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292362/ https://www.ncbi.nlm.nih.gov/pubmed/30799655 http://dx.doi.org/10.1080/10717544.2018.1497106 |
_version_ | 1783380383409111040 |
---|---|
author | Manshadi, Mohammad K. D. Saadat, Mahsa Mohammadi, Mehdi Shamsi, Milad Dejam, Morteza Kamali, Reza Sanati-Nezhad, Amir |
author_facet | Manshadi, Mohammad K. D. Saadat, Mahsa Mohammadi, Mehdi Shamsi, Milad Dejam, Morteza Kamali, Reza Sanati-Nezhad, Amir |
author_sort | Manshadi, Mohammad K. D. |
collection | PubMed |
description | Magnetic drug targeting (MDT) and magnetic-based drug/cargo delivery are emerging treatment methods which attracting the attention of many researchers for curing different cancers and artery diseases such as atherosclerosis. Herein, computational studies are accomplished by utilizing magnetic approaches for cancer and artery atherosclerosis drug delivery, including nanomagnetic drug delivery and magnetic-based drug/cargo delivery. For the first time, the four-layer structural model of the artery tissue and its porosity parameters are modeled in this study which enables the interaction of particles with the tissue walls in blood flow. The effects of parameters, including magnetic field strength (MFS), magnet size, particle size, the initial position of particles, and the relative magnetic permeability of particles, on the efficacy of MDT through the artery walls are characterized. The magnetic particle penetration into artery layers and fibrous cap (the covering layer over the inflamed part of the artery) is further simulated. The MDT in healthy and diseased arteries demonstrates that some of the particles stuck in these tissues due to the collision of particles or blood flow deviation in the vicinity of the inflamed part of the artery. Therefore the geometry of artery and porosity of its layers should be considered to show the real interaction of particles with the artery walls. Also, the results show that increasing the particles/drug/cargo size and MFS leads to more particles/drug/cargo retention within the tissue. The present work provides insights into the decisive factors in arterial MDT with an obvious impact on locoregional cancer treatment, tissue engineering, and regenerative medicine. |
format | Online Article Text |
id | pubmed-6292362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-62923622018-12-17 Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy Manshadi, Mohammad K. D. Saadat, Mahsa Mohammadi, Mehdi Shamsi, Milad Dejam, Morteza Kamali, Reza Sanati-Nezhad, Amir Drug Deliv Research Article Magnetic drug targeting (MDT) and magnetic-based drug/cargo delivery are emerging treatment methods which attracting the attention of many researchers for curing different cancers and artery diseases such as atherosclerosis. Herein, computational studies are accomplished by utilizing magnetic approaches for cancer and artery atherosclerosis drug delivery, including nanomagnetic drug delivery and magnetic-based drug/cargo delivery. For the first time, the four-layer structural model of the artery tissue and its porosity parameters are modeled in this study which enables the interaction of particles with the tissue walls in blood flow. The effects of parameters, including magnetic field strength (MFS), magnet size, particle size, the initial position of particles, and the relative magnetic permeability of particles, on the efficacy of MDT through the artery walls are characterized. The magnetic particle penetration into artery layers and fibrous cap (the covering layer over the inflamed part of the artery) is further simulated. The MDT in healthy and diseased arteries demonstrates that some of the particles stuck in these tissues due to the collision of particles or blood flow deviation in the vicinity of the inflamed part of the artery. Therefore the geometry of artery and porosity of its layers should be considered to show the real interaction of particles with the artery walls. Also, the results show that increasing the particles/drug/cargo size and MFS leads to more particles/drug/cargo retention within the tissue. The present work provides insights into the decisive factors in arterial MDT with an obvious impact on locoregional cancer treatment, tissue engineering, and regenerative medicine. Taylor & Francis 2018-12-06 /pmc/articles/PMC6292362/ /pubmed/30799655 http://dx.doi.org/10.1080/10717544.2018.1497106 Text en © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Manshadi, Mohammad K. D. Saadat, Mahsa Mohammadi, Mehdi Shamsi, Milad Dejam, Morteza Kamali, Reza Sanati-Nezhad, Amir Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
title | Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
title_full | Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
title_fullStr | Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
title_full_unstemmed | Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
title_short | Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
title_sort | delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292362/ https://www.ncbi.nlm.nih.gov/pubmed/30799655 http://dx.doi.org/10.1080/10717544.2018.1497106 |
work_keys_str_mv | AT manshadimohammadkd deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy AT saadatmahsa deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy AT mohammadimehdi deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy AT shamsimilad deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy AT dejammorteza deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy AT kamalireza deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy AT sanatinezhadamir deliveryofmagneticmicronanoparticlesandmagneticbaseddrugcargointoarterialflowfortargetedtherapy |