Cargando…
Performance of convolutional neural networks for identification of bacteria in 3D microscopy datasets
Three-dimensional microscopy is increasingly prevalent in biology due to the development of techniques such as multiphoton, spinning disk confocal, and light sheet fluorescence microscopies. These methods enable unprecedented studies of life at the microscale, but bring with them larger and more com...
Autores principales: | Hay, Edouard A., Parthasarathy, Raghuveer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292638/ https://www.ncbi.nlm.nih.gov/pubmed/30507940 http://dx.doi.org/10.1371/journal.pcbi.1006628 |
Ejemplares similares
-
Small training dataset convolutional neural networks for application-specific super-resolution microscopy
por: Mannam, Varun, et al.
Publicado: (2023) -
Automated high-throughput light-sheet fluorescence microscopy of larval zebrafish
por: Logan, Savannah L., et al.
Publicado: (2018) -
Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets
por: Nogueira-Rodríguez, Alba, et al.
Publicado: (2022) -
Photoacoustic microscopy with sparse data by convolutional neural networks
por: Zhou, Jiasheng, et al.
Publicado: (2021) -
High Performance Implementation of 3D Convolutional Neural Networks on a GPU
por: Lan, Qiang, et al.
Publicado: (2017)