Cargando…

TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome

KEY POINTS: The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilise...

Descripción completa

Detalles Bibliográficos
Autores principales: Choudhury, M., Black, N., Alghamdi, A., D'Souza, A., Wang, R., Yanni, J., Dobrzynski, H., Kingston, P. A., Zhang, H., Boyett, M. R., Morris, G. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292813/
https://www.ncbi.nlm.nih.gov/pubmed/30259525
http://dx.doi.org/10.1113/JP276508
_version_ 1783380439115759616
author Choudhury, M.
Black, N.
Alghamdi, A.
D'Souza, A.
Wang, R.
Yanni, J.
Dobrzynski, H.
Kingston, P. A.
Zhang, H.
Boyett, M. R.
Morris, G. M.
author_facet Choudhury, M.
Black, N.
Alghamdi, A.
D'Souza, A.
Wang, R.
Yanni, J.
Dobrzynski, H.
Kingston, P. A.
Zhang, H.
Boyett, M. R.
Morris, G. M.
author_sort Choudhury, M.
collection PubMed
description KEY POINTS: The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na(+)/Ca(2+) exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. ABSTRACT: The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na(+)/Ca(2+) exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P < 0.001), improved heart rate stability (standard deviation of RR intervals fell from 39.3 ± 7.2 ms to 6.9 ± 0.8 ms, P < 0.01; root mean square of successive differences of RR intervals fell from 41.7 ± 8.2 ms to 6.1 ± 1.2 ms, P < 0.01; standard deviation of points perpendicular to the line of identity of Poincaré plots (SD1) fell from 29.5 ± 5.8 ms to 7.9 ± 2.0 ms, P < 0.05) and restoration of isoprenaline response (increases in rates of SAN 65.5 ± 1.3%, SAP 28.4 ± 3.4% and SAP‐TBX18 103.3 ± 10.2%; P < 0.001). These changes were driven by a TBX18‐induced switch in the dominant HCN isoform in SAP tissue, with a significant upregulation of HCN2 (from 1.01 × 10(−5) ± 2.2 × 10(−6) to 2.8 × 10(−5) ± 4.3 × 10(−6) arbitrary units, P < 0.001). Biophysically detailed computer modelling incorporating isoform‐specific HCN channel electrophysiology confirmed that the measured changes in HCN abundance could account for the observed changes in beating rates. TBX3 and NCX1 were not effective in accelerating the rate of SAP tissue.
format Online
Article
Text
id pubmed-6292813
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-62928132018-12-18 TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome Choudhury, M. Black, N. Alghamdi, A. D'Souza, A. Wang, R. Yanni, J. Dobrzynski, H. Kingston, P. A. Zhang, H. Boyett, M. R. Morris, G. M. J Physiol Cardiovascular KEY POINTS: The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na(+)/Ca(2+) exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. ABSTRACT: The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na(+)/Ca(2+) exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P < 0.001), improved heart rate stability (standard deviation of RR intervals fell from 39.3 ± 7.2 ms to 6.9 ± 0.8 ms, P < 0.01; root mean square of successive differences of RR intervals fell from 41.7 ± 8.2 ms to 6.1 ± 1.2 ms, P < 0.01; standard deviation of points perpendicular to the line of identity of Poincaré plots (SD1) fell from 29.5 ± 5.8 ms to 7.9 ± 2.0 ms, P < 0.05) and restoration of isoprenaline response (increases in rates of SAN 65.5 ± 1.3%, SAP 28.4 ± 3.4% and SAP‐TBX18 103.3 ± 10.2%; P < 0.001). These changes were driven by a TBX18‐induced switch in the dominant HCN isoform in SAP tissue, with a significant upregulation of HCN2 (from 1.01 × 10(−5) ± 2.2 × 10(−6) to 2.8 × 10(−5) ± 4.3 × 10(−6) arbitrary units, P < 0.001). Biophysically detailed computer modelling incorporating isoform‐specific HCN channel electrophysiology confirmed that the measured changes in HCN abundance could account for the observed changes in beating rates. TBX3 and NCX1 were not effective in accelerating the rate of SAP tissue. John Wiley and Sons Inc. 2018-10-13 2018-12-15 /pmc/articles/PMC6292813/ /pubmed/30259525 http://dx.doi.org/10.1113/JP276508 Text en © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Cardiovascular
Choudhury, M.
Black, N.
Alghamdi, A.
D'Souza, A.
Wang, R.
Yanni, J.
Dobrzynski, H.
Kingston, P. A.
Zhang, H.
Boyett, M. R.
Morris, G. M.
TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
title TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
title_full TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
title_fullStr TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
title_full_unstemmed TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
title_short TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
title_sort tbx18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
topic Cardiovascular
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292813/
https://www.ncbi.nlm.nih.gov/pubmed/30259525
http://dx.doi.org/10.1113/JP276508
work_keys_str_mv AT choudhurym tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT blackn tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT alghamdia tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT dsouzaa tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT wangr tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT yannij tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT dobrzynskih tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT kingstonpa tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT zhangh tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT boyettmr tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome
AT morrisgm tbx18overexpressionenhancespacemakerfunctioninaratsubsidiaryatrialpacemakermodelofsicksinussyndrome