Cargando…
Hölder inequality applied on a non-Newtonian fluid equation with a nonlinear convection term and a source term
Consider a non-Newtonian fluid equation with a nonlinear convection term and a source term. The existence of the weak solution is proved by Simon’s compactness theorem. By the Hölder inequality, if both the diffusion coefficient and the convection term are degenerate on the boundary, then the stabil...
Autor principal: | Zhan, Huashui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292976/ https://www.ncbi.nlm.nih.gov/pubmed/30839879 http://dx.doi.org/10.1186/s13660-018-1938-x |
Ejemplares similares
-
The uniqueness of a nonlinear diffusion equation related to the p-Laplacian
por: Zhan, Huashui
Publicado: (2018) -
Existence and stability of the doubly nonlinear anisotropic parabolic equation
por: Zhan, Huashui, et al.
Publicado: (2021) -
Droplet Dynamics of Newtonian and Inelastic Non-Newtonian Fluids in Confinement
por: Ioannou, Nikolaos, et al.
Publicado: (2017) -
Rheology and non-Newtonian fluids
por: Irgens, Fridtjov
Publicado: (2014) -
Conditional Lie-Bäcklund Symmetries and Differential Constraints of Radially Symmetric Nonlinear Convection-Diffusion Equations with Source
por: Ji, Lina, et al.
Publicado: (2020)