Cargando…

Ab Initio Evaluation of Henry Coefficients Using Importance Sampling

[Image: see text] We present a new algorithm that allows for an efficient evaluation of the Henry coefficient of a guest molecule inside a porous material, which permits to use ab initio energy calculations. The Widom insertion method, which is currently used to compute these Henry coefficients, typ...

Descripción completa

Detalles Bibliográficos
Autores principales: Vandenbrande, Steven, Waroquier, Michel, Van Speybroeck, Veronique, Verstraelen, Toon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293446/
https://www.ncbi.nlm.nih.gov/pubmed/30376328
http://dx.doi.org/10.1021/acs.jctc.8b00892
_version_ 1783380537140838400
author Vandenbrande, Steven
Waroquier, Michel
Van Speybroeck, Veronique
Verstraelen, Toon
author_facet Vandenbrande, Steven
Waroquier, Michel
Van Speybroeck, Veronique
Verstraelen, Toon
author_sort Vandenbrande, Steven
collection PubMed
description [Image: see text] We present a new algorithm that allows for an efficient evaluation of the Henry coefficient of a guest molecule inside a porous material, which permits to use ab initio energy calculations. The Widom insertion method, which is currently used to compute these Henry coefficients, typically requires millions of energy evaluations. Our new methodology reduces this number by more than 1 order of magnitude, enabling the use of an ab initio potential energy surface. The methodology we propose is reminiscent of the well-known importance sampling technique which is frequently used in Monte Carlo integrations. First, a conventional Widom insertion simulation is performed using a force field. In the second step, the Widom results are used to select a limited number of configurations and only for these configurations the ab initio evaluation of the energy is required. Finally, by appropriately reweighting the latter energies, an accurate estimation of the ab initio Henry coefficient is possible at a moderate computational cost. We apply our methodology to the adsorption of CO(2) in Mg-MOF-74, a prototypical case where interactions of a polar guest molecule with unsaturated metal sites dominate the adsorption mechanism. In this case generic force fields such as UFF or Dreiding are inappropriate and the use of ab initio methods is indispensable. In a second case study, we compute Henry coefficients of methane in UiO-66 using different levels of theory. We pay particular attention to the influence of the dispersion corrections and the role of many-body effects. For the final example, we qualitatively investigate adsorption features for a series of functionalized UiO-66 frameworks. Overall the cases we present show that accurate computations of Henry coefficients is extremely challenging, as different levels of theory provide strongly varying results. At the same time ab initio calculations have added value compared to force fields, as they provide a physically more sound description of the adsorption mechanism and in some cases clearly improve correspondence with experiment.
format Online
Article
Text
id pubmed-6293446
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-62934462018-12-15 Ab Initio Evaluation of Henry Coefficients Using Importance Sampling Vandenbrande, Steven Waroquier, Michel Van Speybroeck, Veronique Verstraelen, Toon J Chem Theory Comput [Image: see text] We present a new algorithm that allows for an efficient evaluation of the Henry coefficient of a guest molecule inside a porous material, which permits to use ab initio energy calculations. The Widom insertion method, which is currently used to compute these Henry coefficients, typically requires millions of energy evaluations. Our new methodology reduces this number by more than 1 order of magnitude, enabling the use of an ab initio potential energy surface. The methodology we propose is reminiscent of the well-known importance sampling technique which is frequently used in Monte Carlo integrations. First, a conventional Widom insertion simulation is performed using a force field. In the second step, the Widom results are used to select a limited number of configurations and only for these configurations the ab initio evaluation of the energy is required. Finally, by appropriately reweighting the latter energies, an accurate estimation of the ab initio Henry coefficient is possible at a moderate computational cost. We apply our methodology to the adsorption of CO(2) in Mg-MOF-74, a prototypical case where interactions of a polar guest molecule with unsaturated metal sites dominate the adsorption mechanism. In this case generic force fields such as UFF or Dreiding are inappropriate and the use of ab initio methods is indispensable. In a second case study, we compute Henry coefficients of methane in UiO-66 using different levels of theory. We pay particular attention to the influence of the dispersion corrections and the role of many-body effects. For the final example, we qualitatively investigate adsorption features for a series of functionalized UiO-66 frameworks. Overall the cases we present show that accurate computations of Henry coefficients is extremely challenging, as different levels of theory provide strongly varying results. At the same time ab initio calculations have added value compared to force fields, as they provide a physically more sound description of the adsorption mechanism and in some cases clearly improve correspondence with experiment. American Chemical Society 2018-10-30 2018-12-11 /pmc/articles/PMC6293446/ /pubmed/30376328 http://dx.doi.org/10.1021/acs.jctc.8b00892 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Vandenbrande, Steven
Waroquier, Michel
Van Speybroeck, Veronique
Verstraelen, Toon
Ab Initio Evaluation of Henry Coefficients Using Importance Sampling
title Ab Initio Evaluation of Henry Coefficients Using Importance Sampling
title_full Ab Initio Evaluation of Henry Coefficients Using Importance Sampling
title_fullStr Ab Initio Evaluation of Henry Coefficients Using Importance Sampling
title_full_unstemmed Ab Initio Evaluation of Henry Coefficients Using Importance Sampling
title_short Ab Initio Evaluation of Henry Coefficients Using Importance Sampling
title_sort ab initio evaluation of henry coefficients using importance sampling
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293446/
https://www.ncbi.nlm.nih.gov/pubmed/30376328
http://dx.doi.org/10.1021/acs.jctc.8b00892
work_keys_str_mv AT vandenbrandesteven abinitioevaluationofhenrycoefficientsusingimportancesampling
AT waroquiermichel abinitioevaluationofhenrycoefficientsusingimportancesampling
AT vanspeybroeckveronique abinitioevaluationofhenrycoefficientsusingimportancesampling
AT verstraelentoon abinitioevaluationofhenrycoefficientsusingimportancesampling