Cargando…
MISC: missing imputation for single-cell RNA sequencing data
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) technology provides an effective way to study cell heterogeneity. However, due to the low capture efficiency and stochastic gene expression, scRNA-seq data often contains a high percentage of missing values. It has been showed that the missing rate...
Autores principales: | Yang, Mary Qu, Weissman, Sherman M., Yang, William, Zhang, Jialing, Canaann, Allon, Guan, Renchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293493/ https://www.ncbi.nlm.nih.gov/pubmed/30547798 http://dx.doi.org/10.1186/s12918-018-0638-y |
Ejemplares similares
-
Correction to: MISC: missing imputation for single-cell RNA sequencing data
por: Yang, Mary Qu, et al.
Publicado: (2019) -
Transcription Factor and lncRNA Regulatory Networks Identify Key Elements in Lung Adenocarcinoma
por: Li, Dan, et al.
Publicado: (2018) -
Erratum: Dan Li et al.; Transcription Factor and lncRNA Regulatory Networks Identify Key Elements in Lung Adenocarcinoma. Genes 2018, 9, 12
por: Li, Dan, et al.
Publicado: (2018) -
DrImpute: imputing dropout events in single cell RNA sequencing data
por: Gong, Wuming, et al.
Publicado: (2018) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018)