Cargando…
A New Method for Detecting P300 Signals by Using Deep Learning: Hyperparameter Tuning in High-Dimensional Space by Minimizing Nonconvex Error Function
BACKGROUND: P300 signal detection is an essential problem in many fields of Brain-Computer Interface (BCI) systems. Although deep neural networks have almost ubiquitously used in P300 detection, in such networks, increasing the number of dimensions leads to growth ratio of saddle points to local min...
Autores principales: | Shojaedini, Seyed Vahab, Morabbi, Sajedeh, Keyvanpour, MohammadReza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293645/ https://www.ncbi.nlm.nih.gov/pubmed/30603612 http://dx.doi.org/10.4103/jmss.JMSS_7_18 |
Ejemplares similares
-
A New Method to Improve the Performance of Deep Neural Networks in Detecting P300 Signals: Optimizing Curvature of Error Surface Using Genetic Algorithm
por: Shojaedini, Seyed Vahab, et al.
Publicado: (2021) -
A New method for promote the performance of deep learning paradigm in diagnosing breast cancer: improving role of fusing multiple views of thermography images
por: Ensafi, Mahsa, et al.
Publicado: (2022) -
Inertial proximal alternating minimization for nonconvex and nonsmooth problems
por: Zhang, Yaxuan, et al.
Publicado: (2017) -
Residual Learning: A New Paradigm to Improve Deep Learning-Based Segmentation of the Left Ventricle in Magnetic Resonance Imaging Cardiac Images
por: Zarvani, Maral, et al.
Publicado: (2021) -
A New Method for Sperm Characterization for Infertility Treatment: Hypothesis Testing by Using Combination of Watershed Segmentation and Graph Theory
por: Shojaedini, Seyed Vahab, et al.
Publicado: (2014)