Cargando…
Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below
We show that for a noncollapsing sequence of closed, connected, oriented Riemannian manifolds with Ricci curvature bounded below and diameter bounded above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In particular, the limiting current is essentially unique, has multiplicit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294178/ https://www.ncbi.nlm.nih.gov/pubmed/30839891 http://dx.doi.org/10.1007/s12220-016-9742-7 |
_version_ | 1783380691535265792 |
---|---|
author | Matveev, Rostislav Portegies, Jacobus W. |
author_facet | Matveev, Rostislav Portegies, Jacobus W. |
author_sort | Matveev, Rostislav |
collection | PubMed |
description | We show that for a noncollapsing sequence of closed, connected, oriented Riemannian manifolds with Ricci curvature bounded below and diameter bounded above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In particular, the limiting current is essentially unique, has multiplicity one, and mass equal to the Hausdorff measure. Moreover, the limit spaces satisfy a constancy theorem. |
format | Online Article Text |
id | pubmed-6294178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-62941782018-12-28 Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below Matveev, Rostislav Portegies, Jacobus W. J Geom Anal Article We show that for a noncollapsing sequence of closed, connected, oriented Riemannian manifolds with Ricci curvature bounded below and diameter bounded above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In particular, the limiting current is essentially unique, has multiplicity one, and mass equal to the Hausdorff measure. Moreover, the limit spaces satisfy a constancy theorem. Springer US 2016-09-28 2017 /pmc/articles/PMC6294178/ /pubmed/30839891 http://dx.doi.org/10.1007/s12220-016-9742-7 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Matveev, Rostislav Portegies, Jacobus W. Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below |
title | Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below |
title_full | Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below |
title_fullStr | Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below |
title_full_unstemmed | Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below |
title_short | Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below |
title_sort | intrinsic flat and gromov-hausdorff convergence of manifolds with ricci curvature bounded below |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294178/ https://www.ncbi.nlm.nih.gov/pubmed/30839891 http://dx.doi.org/10.1007/s12220-016-9742-7 |
work_keys_str_mv | AT matveevrostislav intrinsicflatandgromovhausdorffconvergenceofmanifoldswithriccicurvatureboundedbelow AT portegiesjacobusw intrinsicflatandgromovhausdorffconvergenceofmanifoldswithriccicurvatureboundedbelow |