Cargando…
Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below
We show that for a noncollapsing sequence of closed, connected, oriented Riemannian manifolds with Ricci curvature bounded below and diameter bounded above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In particular, the limiting current is essentially unique, has multiplicit...
Autores principales: | Matveev, Rostislav, Portegies, Jacobus W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294178/ https://www.ncbi.nlm.nih.gov/pubmed/30839891 http://dx.doi.org/10.1007/s12220-016-9742-7 |
Ejemplares similares
-
Gromov-Hausdorff distance for quantum metric spaces, matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance
por: Rieffel, Marc A
Publicado: (2004) -
Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below
por: Gigli, Nicola
Publicado: (2018) -
Methods of holonomy theory for Ricci-flat Riemannian manifolds
por: McInnes, B
Publicado: (1991) -
On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth
por: Antonelli, Gioacchino, et al.
Publicado: (2022) -
A local singularity analysis for the Ricci flow and its applications to Ricci flows with bounded scalar curvature
por: Buzano, Reto, et al.
Publicado: (2022)