Cargando…
The Trace Theorem, the Luzin N- and Morse–Sard Properties for the Sharp Case of Sobolev–Lorentz Mappings
We prove Luzin N- and Morse–Sard properties for mappings [Formula: see text] of the Sobolev–Lorentz class [Formula: see text] , [Formula: see text] (this is the sharp case that guaranties the continuity of mappings). Our main tool is a new trace theorem for Riesz potentials of Lorentz functions for...
Autores principales: | Korobkov, Mikhail V., Kristensen, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294181/ https://www.ncbi.nlm.nih.gov/pubmed/30839877 http://dx.doi.org/10.1007/s12220-017-9936-7 |
Ejemplares similares
-
Quantitative generalized Bertini-Sard theorem for smooth affine varieties
por: Jelonek, Z, et al.
Publicado: (2002) -
Sharp Sobolev Inequalities via Projection Averages
por: Kniefacz, Philipp, et al.
Publicado: (2020) -
The Pólya-Szegö Principle and the Anisotropic Convex Lorentz-Sobolev Inequality
por: Liu, Shuai, et al.
Publicado: (2014) -
Quantitative analysis in sobolev imbedding theorems and applications to spectral theory
por: Birman, M Z, et al.
Publicado: (1980) -
Axiomatic approach to function spaces, spectral synthesis, and Luzin approximation
por: Hedberg, Lars Inge, et al.
Publicado: (2007)