Cargando…

K-Semistability of cscK Manifolds with Transcendental Cohomology Class

We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows...

Descripción completa

Detalles Bibliográficos
Autor principal: Sjöström Dyrefelt, Zakarias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294182/
https://www.ncbi.nlm.nih.gov/pubmed/30595639
http://dx.doi.org/10.1007/s12220-017-9942-9
Descripción
Sumario:We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson–Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.