Cargando…

K-Semistability of cscK Manifolds with Transcendental Cohomology Class

We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows...

Descripción completa

Detalles Bibliográficos
Autor principal: Sjöström Dyrefelt, Zakarias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294182/
https://www.ncbi.nlm.nih.gov/pubmed/30595639
http://dx.doi.org/10.1007/s12220-017-9942-9
_version_ 1783380692502052864
author Sjöström Dyrefelt, Zakarias
author_facet Sjöström Dyrefelt, Zakarias
author_sort Sjöström Dyrefelt, Zakarias
collection PubMed
description We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson–Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.
format Online
Article
Text
id pubmed-6294182
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-62941822018-12-28 K-Semistability of cscK Manifolds with Transcendental Cohomology Class Sjöström Dyrefelt, Zakarias J Geom Anal Article We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson–Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays. Springer US 2017-10-16 2018 /pmc/articles/PMC6294182/ /pubmed/30595639 http://dx.doi.org/10.1007/s12220-017-9942-9 Text en © The authors 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Sjöström Dyrefelt, Zakarias
K-Semistability of cscK Manifolds with Transcendental Cohomology Class
title K-Semistability of cscK Manifolds with Transcendental Cohomology Class
title_full K-Semistability of cscK Manifolds with Transcendental Cohomology Class
title_fullStr K-Semistability of cscK Manifolds with Transcendental Cohomology Class
title_full_unstemmed K-Semistability of cscK Manifolds with Transcendental Cohomology Class
title_short K-Semistability of cscK Manifolds with Transcendental Cohomology Class
title_sort k-semistability of csck manifolds with transcendental cohomology class
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294182/
https://www.ncbi.nlm.nih.gov/pubmed/30595639
http://dx.doi.org/10.1007/s12220-017-9942-9
work_keys_str_mv AT sjostromdyrefeltzakarias ksemistabilityofcsckmanifoldswithtranscendentalcohomologyclass