Cargando…
Machine learning plastic deformation of crystals
Plastic deformation of micron-scale crystalline solids exhibits stress-strain curves with significant sample-to-sample variations. It is a pertinent question if this variability is purely random or to some extent predictable. Here we show, by employing machine learning techniques such as regression...
Autores principales: | Salmenjoki, Henri, Alava, Mikko J., Laurson, Lasse |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294252/ https://www.ncbi.nlm.nih.gov/pubmed/30546114 http://dx.doi.org/10.1038/s41467-018-07737-2 |
Ejemplares similares
-
Propagating bands of plastic deformation in a metal alloy as critical avalanches
por: Mäkinen, Tero, et al.
Publicado: (2020) -
Machine learning dislocation density correlations and solute effects in Mg-based alloys
por: Salmenjoki, H., et al.
Publicado: (2023) -
Predicting elastic and plastic properties of small iron polycrystals by machine learning
por: Mińkowski, Marcin, et al.
Publicado: (2023) -
Quenched pinning and collective dislocation dynamics
por: Ovaska, Markus, et al.
Publicado: (2015) -
Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar
por: Salmenjoki, Henri, et al.
Publicado: (2021)