Cargando…

Interdependences between finger movement direction and haptic perception of oriented textures

Although the natural haptic perception of textures includes active finger movements, it is unclear how closely perception and movements are linked. Here we investigated this question using oriented textures. Textures that are composed of periodically repeating grooves have a clear orientation define...

Descripción completa

Detalles Bibliográficos
Autores principales: Lezkan, Alexandra, Drewing, Knut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294351/
https://www.ncbi.nlm.nih.gov/pubmed/30550578
http://dx.doi.org/10.1371/journal.pone.0208988
_version_ 1783380719701065728
author Lezkan, Alexandra
Drewing, Knut
author_facet Lezkan, Alexandra
Drewing, Knut
author_sort Lezkan, Alexandra
collection PubMed
description Although the natural haptic perception of textures includes active finger movements, it is unclear how closely perception and movements are linked. Here we investigated this question using oriented textures. Textures that are composed of periodically repeating grooves have a clear orientation defined by the grooves. The direction of finger movement relative to texture orientation determines the availability of temporal cues to the spatial period of the texture. These cues are absent during movements directed in line with texture orientation, whereas movements orthogonal to texture orientation maximize the temporal frequency of stimulation. This may optimize temporal cues. In Experiment 1 we tested whether texture perception gets more precise the more orthogonal the movement direction is to the texture. We systematically varied the movement direction within a 2IFC spatial period discrimination task. As expected, perception was more precise (lower discrimination thresholds) when finger movements were directed closer towards the texture orthogonal as compared to in parallel to the texture. In Experiment 2 we investigated whether people adjust movement directions to the texture orthogonal in free exploration. We recorded movement directions during free exploration of standard and comparison gratings. The standard gratings were clearly oriented. The comparison gratings did not have a clear orientation defined by grooves. Participants adjusted movement directions to the texture orthogonal only for clearly oriented textures (standards). The adjustment to texture orthogonal was present in the final movement but not in the first movement. This suggests that movement adjustment is based on sensory signals for texture orientation that were gathered over the course of exploration. In Experiment 3 we assessed whether the perception of texture orientation and movement adjustments are based on shared sensory signals. We determined perceptual thresholds for orientation discrimination and computed ‘movometric’ thresholds from the stroke-by-stroke adjustment of movement direction. Perception and movements were influenced by a common factor, the spatial period, suggesting that the same sensory signals for texture orientation contribute to both. We conclude that people optimize texture perception by adjusting their movements in directions that maximize temporal cue frequency. Adjustments are performed on the basis of sensory signals that are also used for perception.
format Online
Article
Text
id pubmed-6294351
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62943512018-12-28 Interdependences between finger movement direction and haptic perception of oriented textures Lezkan, Alexandra Drewing, Knut PLoS One Research Article Although the natural haptic perception of textures includes active finger movements, it is unclear how closely perception and movements are linked. Here we investigated this question using oriented textures. Textures that are composed of periodically repeating grooves have a clear orientation defined by the grooves. The direction of finger movement relative to texture orientation determines the availability of temporal cues to the spatial period of the texture. These cues are absent during movements directed in line with texture orientation, whereas movements orthogonal to texture orientation maximize the temporal frequency of stimulation. This may optimize temporal cues. In Experiment 1 we tested whether texture perception gets more precise the more orthogonal the movement direction is to the texture. We systematically varied the movement direction within a 2IFC spatial period discrimination task. As expected, perception was more precise (lower discrimination thresholds) when finger movements were directed closer towards the texture orthogonal as compared to in parallel to the texture. In Experiment 2 we investigated whether people adjust movement directions to the texture orthogonal in free exploration. We recorded movement directions during free exploration of standard and comparison gratings. The standard gratings were clearly oriented. The comparison gratings did not have a clear orientation defined by grooves. Participants adjusted movement directions to the texture orthogonal only for clearly oriented textures (standards). The adjustment to texture orthogonal was present in the final movement but not in the first movement. This suggests that movement adjustment is based on sensory signals for texture orientation that were gathered over the course of exploration. In Experiment 3 we assessed whether the perception of texture orientation and movement adjustments are based on shared sensory signals. We determined perceptual thresholds for orientation discrimination and computed ‘movometric’ thresholds from the stroke-by-stroke adjustment of movement direction. Perception and movements were influenced by a common factor, the spatial period, suggesting that the same sensory signals for texture orientation contribute to both. We conclude that people optimize texture perception by adjusting their movements in directions that maximize temporal cue frequency. Adjustments are performed on the basis of sensory signals that are also used for perception. Public Library of Science 2018-12-14 /pmc/articles/PMC6294351/ /pubmed/30550578 http://dx.doi.org/10.1371/journal.pone.0208988 Text en © 2018 Lezkan, Drewing http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lezkan, Alexandra
Drewing, Knut
Interdependences between finger movement direction and haptic perception of oriented textures
title Interdependences between finger movement direction and haptic perception of oriented textures
title_full Interdependences between finger movement direction and haptic perception of oriented textures
title_fullStr Interdependences between finger movement direction and haptic perception of oriented textures
title_full_unstemmed Interdependences between finger movement direction and haptic perception of oriented textures
title_short Interdependences between finger movement direction and haptic perception of oriented textures
title_sort interdependences between finger movement direction and haptic perception of oriented textures
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294351/
https://www.ncbi.nlm.nih.gov/pubmed/30550578
http://dx.doi.org/10.1371/journal.pone.0208988
work_keys_str_mv AT lezkanalexandra interdependencesbetweenfingermovementdirectionandhapticperceptionoforientedtextures
AT drewingknut interdependencesbetweenfingermovementdirectionandhapticperceptionoforientedtextures