Cargando…
Bayesian hierarchical vector autoregressive models for patient-level predictive modeling
Predicting health outcomes from longitudinal health histories is of central importance to healthcare. Observational healthcare databases such as patient diary databases provide a rich resource for patient-level predictive modeling. In this paper, we propose a Bayesian hierarchical vector autoregress...
Autores principales: | Lu, Feihan, Zheng, Yao, Cleveland, Harrington, Burton, Chris, Madigan, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294362/ https://www.ncbi.nlm.nih.gov/pubmed/30550560 http://dx.doi.org/10.1371/journal.pone.0208082 |
Ejemplares similares
-
Small open economies and external shocks: an application of Bayesian global vector autoregression model
por: Onipede, Samuel F., et al.
Publicado: (2022) -
Model reduction methods for vector autoregressive processes
por: Brüggemann, Ralf
Publicado: (2004) -
Bayesian time‐varying autoregressive models of COVID‐19 epidemics
por: Giudici, Paolo, et al.
Publicado: (2022) -
Combining shrinkage and sparsity in conjugate vector autoregressive models
por: Hauzenberger, Niko, et al.
Publicado: (2021) -
Forecasting COVID-19: Vector Autoregression-Based Model
por: Rajab, Khairan, et al.
Publicado: (2022)