Cargando…
Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa
Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude, and spatial distribution of t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294365/ https://www.ncbi.nlm.nih.gov/pubmed/30550542 http://dx.doi.org/10.1371/journal.pone.0208400 |
_version_ | 1783380723037634560 |
---|---|
author | Southworth, Jane Bunting, Erin Zhu, Likai Ryan, Sadie J. Herrero, Hannah V. Waylen, Peter Muñoz-Carpena, Rafael Campo-Bescós, Miguel A. Kaplan, David |
author_facet | Southworth, Jane Bunting, Erin Zhu, Likai Ryan, Sadie J. Herrero, Hannah V. Waylen, Peter Muñoz-Carpena, Rafael Campo-Bescós, Miguel A. Kaplan, David |
author_sort | Southworth, Jane |
collection | PubMed |
description | Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude, and spatial distribution of the key environmental and socioeconomic factors driving vegetation change in a southern African savanna. This research was conducted across the Kwando, Okavango and Zambezi catchments of southern Africa (Angola, Namibia, Botswana and Zambia) and explored vegetation cover change across the region from 2001–2010. A novel coupled analysis was applied to model the dynamic biophysical factors then to determine the discrete / social drivers of spatial heterogeneity on vegetation. Previous research applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique, to ten years of monthly remotely sensed vegetation data (MODIS-derived normalized difference vegetation index, NDVI), and a suite of time-series (monthly) environmental covariates: precipitation, mean, minimum and maximum air temperature, soil moisture, relative humidity, fire and potential evapotranspiration. This initial research was performed at a regional scale to develop meso-scale models explaining mean regional NDVI patterns. The regional DFA predictions were compared to the fine-scale MODIS time series using Kendall’s Tau and Sen’s Slope to identify pixels where the DFA model we had developed, under or over predicted NDVI. Once identified, a Random Forest (RF) analysis using a series of static social and physical variables was applied to explain these remaining areas of under- and over- prediction to fully explore the drivers of heterogeneity in this savanna system. The RF analysis revealed the importance of protected areas, elevation, soil type, locations of higher population, roads, and settlements, in explaining fine scale differences in vegetation biomass. While the previously applied DFA generated a model of environmental variables driving NDVI, the RF work developed here highlighted human influences dominating that signal. The combined DFRFA model approach explains almost 90% of the variance in NDVI across this landscape from 2001–2010. Our methodology presents a unique coupling of dynamic and static factor analyses, yielding novel insights into savanna heterogeneity, and providing a tool of great potential for researchers and managers alike. |
format | Online Article Text |
id | pubmed-6294365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62943652018-12-28 Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa Southworth, Jane Bunting, Erin Zhu, Likai Ryan, Sadie J. Herrero, Hannah V. Waylen, Peter Muñoz-Carpena, Rafael Campo-Bescós, Miguel A. Kaplan, David PLoS One Research Article Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude, and spatial distribution of the key environmental and socioeconomic factors driving vegetation change in a southern African savanna. This research was conducted across the Kwando, Okavango and Zambezi catchments of southern Africa (Angola, Namibia, Botswana and Zambia) and explored vegetation cover change across the region from 2001–2010. A novel coupled analysis was applied to model the dynamic biophysical factors then to determine the discrete / social drivers of spatial heterogeneity on vegetation. Previous research applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique, to ten years of monthly remotely sensed vegetation data (MODIS-derived normalized difference vegetation index, NDVI), and a suite of time-series (monthly) environmental covariates: precipitation, mean, minimum and maximum air temperature, soil moisture, relative humidity, fire and potential evapotranspiration. This initial research was performed at a regional scale to develop meso-scale models explaining mean regional NDVI patterns. The regional DFA predictions were compared to the fine-scale MODIS time series using Kendall’s Tau and Sen’s Slope to identify pixels where the DFA model we had developed, under or over predicted NDVI. Once identified, a Random Forest (RF) analysis using a series of static social and physical variables was applied to explain these remaining areas of under- and over- prediction to fully explore the drivers of heterogeneity in this savanna system. The RF analysis revealed the importance of protected areas, elevation, soil type, locations of higher population, roads, and settlements, in explaining fine scale differences in vegetation biomass. While the previously applied DFA generated a model of environmental variables driving NDVI, the RF work developed here highlighted human influences dominating that signal. The combined DFRFA model approach explains almost 90% of the variance in NDVI across this landscape from 2001–2010. Our methodology presents a unique coupling of dynamic and static factor analyses, yielding novel insights into savanna heterogeneity, and providing a tool of great potential for researchers and managers alike. Public Library of Science 2018-12-14 /pmc/articles/PMC6294365/ /pubmed/30550542 http://dx.doi.org/10.1371/journal.pone.0208400 Text en © 2018 Southworth et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Southworth, Jane Bunting, Erin Zhu, Likai Ryan, Sadie J. Herrero, Hannah V. Waylen, Peter Muñoz-Carpena, Rafael Campo-Bescós, Miguel A. Kaplan, David Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa |
title | Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa |
title_full | Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa |
title_fullStr | Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa |
title_full_unstemmed | Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa |
title_short | Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa |
title_sort | using a coupled dynamic factor – random forest analysis (dfrfa) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern africa |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294365/ https://www.ncbi.nlm.nih.gov/pubmed/30550542 http://dx.doi.org/10.1371/journal.pone.0208400 |
work_keys_str_mv | AT southworthjane usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT buntingerin usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT zhulikai usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT ryansadiej usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT herrerohannahv usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT waylenpeter usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT munozcarpenarafael usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT campobescosmiguela usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica AT kaplandavid usingacoupleddynamicfactorrandomforestanalysisdfrfatorevealdriversofspatiotemporalheterogeneityinthesemiaridregionsofsouthernafrica |