Cargando…

CRISPR-C: circularization of genes and chromosome by CRISPR in human cells

Extrachromosomal circular DNA (eccDNA) and ring chromosomes are genetic alterations found in humans with genetic disorders. However, there is a lack of genetic engineering tools to recapitulate and study the biogenesis of eccDNAs. Here, we created a dual-fluorescence biosensor cassette, which upon t...

Descripción completa

Detalles Bibliográficos
Autores principales: Møller, Henrik Devitt, Lin, Lin, Xiang, Xi, Petersen, Trine Skov, Huang, Jinrong, Yang, Luhan, Kjeldsen, Eigil, Jensen, Uffe Birk, Zhang, Xiuqing, Liu, Xin, Xu, Xun, Wang, Jian, Yang, Huanming, Church, George M, Bolund, Lars, Regenberg, Birgitte, Luo, Yonglun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294522/
https://www.ncbi.nlm.nih.gov/pubmed/30551175
http://dx.doi.org/10.1093/nar/gky767
_version_ 1783380747381374976
author Møller, Henrik Devitt
Lin, Lin
Xiang, Xi
Petersen, Trine Skov
Huang, Jinrong
Yang, Luhan
Kjeldsen, Eigil
Jensen, Uffe Birk
Zhang, Xiuqing
Liu, Xin
Xu, Xun
Wang, Jian
Yang, Huanming
Church, George M
Bolund, Lars
Regenberg, Birgitte
Luo, Yonglun
author_facet Møller, Henrik Devitt
Lin, Lin
Xiang, Xi
Petersen, Trine Skov
Huang, Jinrong
Yang, Luhan
Kjeldsen, Eigil
Jensen, Uffe Birk
Zhang, Xiuqing
Liu, Xin
Xu, Xun
Wang, Jian
Yang, Huanming
Church, George M
Bolund, Lars
Regenberg, Birgitte
Luo, Yonglun
author_sort Møller, Henrik Devitt
collection PubMed
description Extrachromosomal circular DNA (eccDNA) and ring chromosomes are genetic alterations found in humans with genetic disorders. However, there is a lack of genetic engineering tools to recapitulate and study the biogenesis of eccDNAs. Here, we created a dual-fluorescence biosensor cassette, which upon the delivery of pairs of CRISPR/Cas9 guide RNAs, CRISPR-C, allows us to study the biogenesis of a specific fluorophore expressing eccDNA in human cells. We show that CRISPR-C can generate functional eccDNA, using the novel eccDNA biosensor system. We further reveal that CRISPR-C also can generate eccDNAs from intergenic and genic loci in human embryonic kidney 293T cells and human mammary fibroblasts. EccDNAs mainly forms by end-joining mediated DNA-repair and we show that CRISPR-C is able to generate endogenous eccDNAs in sizes from a few hundred base pairs and ranging up to 207 kb. Even a 47.4 megabase-sized ring chromosome 18 can be created by CRISPR-C. Our study creates a new territory for CRISPR gene editing and highlights CRISPR-C as a useful tool for studying the cellular impact, persistence and function of eccDNAs.
format Online
Article
Text
id pubmed-6294522
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-62945222018-12-21 CRISPR-C: circularization of genes and chromosome by CRISPR in human cells Møller, Henrik Devitt Lin, Lin Xiang, Xi Petersen, Trine Skov Huang, Jinrong Yang, Luhan Kjeldsen, Eigil Jensen, Uffe Birk Zhang, Xiuqing Liu, Xin Xu, Xun Wang, Jian Yang, Huanming Church, George M Bolund, Lars Regenberg, Birgitte Luo, Yonglun Nucleic Acids Res Methods Online Extrachromosomal circular DNA (eccDNA) and ring chromosomes are genetic alterations found in humans with genetic disorders. However, there is a lack of genetic engineering tools to recapitulate and study the biogenesis of eccDNAs. Here, we created a dual-fluorescence biosensor cassette, which upon the delivery of pairs of CRISPR/Cas9 guide RNAs, CRISPR-C, allows us to study the biogenesis of a specific fluorophore expressing eccDNA in human cells. We show that CRISPR-C can generate functional eccDNA, using the novel eccDNA biosensor system. We further reveal that CRISPR-C also can generate eccDNAs from intergenic and genic loci in human embryonic kidney 293T cells and human mammary fibroblasts. EccDNAs mainly forms by end-joining mediated DNA-repair and we show that CRISPR-C is able to generate endogenous eccDNAs in sizes from a few hundred base pairs and ranging up to 207 kb. Even a 47.4 megabase-sized ring chromosome 18 can be created by CRISPR-C. Our study creates a new territory for CRISPR gene editing and highlights CRISPR-C as a useful tool for studying the cellular impact, persistence and function of eccDNAs. Oxford University Press 2018-12-14 2018-08-24 /pmc/articles/PMC6294522/ /pubmed/30551175 http://dx.doi.org/10.1093/nar/gky767 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Online
Møller, Henrik Devitt
Lin, Lin
Xiang, Xi
Petersen, Trine Skov
Huang, Jinrong
Yang, Luhan
Kjeldsen, Eigil
Jensen, Uffe Birk
Zhang, Xiuqing
Liu, Xin
Xu, Xun
Wang, Jian
Yang, Huanming
Church, George M
Bolund, Lars
Regenberg, Birgitte
Luo, Yonglun
CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
title CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
title_full CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
title_fullStr CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
title_full_unstemmed CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
title_short CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
title_sort crispr-c: circularization of genes and chromosome by crispr in human cells
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294522/
https://www.ncbi.nlm.nih.gov/pubmed/30551175
http://dx.doi.org/10.1093/nar/gky767
work_keys_str_mv AT møllerhenrikdevitt crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT linlin crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT xiangxi crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT petersentrineskov crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT huangjinrong crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT yangluhan crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT kjeldseneigil crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT jensenuffebirk crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT zhangxiuqing crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT liuxin crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT xuxun crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT wangjian crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT yanghuanming crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT churchgeorgem crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT bolundlars crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT regenbergbirgitte crisprccircularizationofgenesandchromosomebycrisprinhumancells
AT luoyonglun crisprccircularizationofgenesandchromosomebycrisprinhumancells