Cargando…

Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes

Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear...

Descripción completa

Detalles Bibliográficos
Autores principales: Balboa, Diego, Saarimäki-Vire, Jonna, Borshagovski, Daniel, Survila, Mantas, Lindholm, Päivi, Galli, Emilia, Eurola, Solja, Ustinov, Jarkko, Grym, Heli, Huopio, Hanna, Partanen, Juha, Wartiovaara, Kirmo, Otonkoski, Timo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294552/
https://www.ncbi.nlm.nih.gov/pubmed/30412052
http://dx.doi.org/10.7554/eLife.38519
_version_ 1783380749746962432
author Balboa, Diego
Saarimäki-Vire, Jonna
Borshagovski, Daniel
Survila, Mantas
Lindholm, Päivi
Galli, Emilia
Eurola, Solja
Ustinov, Jarkko
Grym, Heli
Huopio, Hanna
Partanen, Juha
Wartiovaara, Kirmo
Otonkoski, Timo
author_facet Balboa, Diego
Saarimäki-Vire, Jonna
Borshagovski, Daniel
Survila, Mantas
Lindholm, Päivi
Galli, Emilia
Eurola, Solja
Ustinov, Jarkko
Grym, Heli
Huopio, Hanna
Partanen, Juha
Wartiovaara, Kirmo
Otonkoski, Timo
author_sort Balboa, Diego
collection PubMed
description Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development.
format Online
Article
Text
id pubmed-6294552
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-62945522018-12-15 Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes Balboa, Diego Saarimäki-Vire, Jonna Borshagovski, Daniel Survila, Mantas Lindholm, Päivi Galli, Emilia Eurola, Solja Ustinov, Jarkko Grym, Heli Huopio, Hanna Partanen, Juha Wartiovaara, Kirmo Otonkoski, Timo eLife Stem Cells and Regenerative Medicine Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development. eLife Sciences Publications, Ltd 2018-11-09 /pmc/articles/PMC6294552/ /pubmed/30412052 http://dx.doi.org/10.7554/eLife.38519 Text en © 2018, Balboa et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Stem Cells and Regenerative Medicine
Balboa, Diego
Saarimäki-Vire, Jonna
Borshagovski, Daniel
Survila, Mantas
Lindholm, Päivi
Galli, Emilia
Eurola, Solja
Ustinov, Jarkko
Grym, Heli
Huopio, Hanna
Partanen, Juha
Wartiovaara, Kirmo
Otonkoski, Timo
Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
title Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
title_full Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
title_fullStr Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
title_full_unstemmed Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
title_short Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes
title_sort insulin mutations impair beta-cell development in a patient-derived ipsc model of neonatal diabetes
topic Stem Cells and Regenerative Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294552/
https://www.ncbi.nlm.nih.gov/pubmed/30412052
http://dx.doi.org/10.7554/eLife.38519
work_keys_str_mv AT balboadiego insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT saarimakivirejonna insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT borshagovskidaniel insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT survilamantas insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT lindholmpaivi insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT galliemilia insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT eurolasolja insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT ustinovjarkko insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT grymheli insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT huopiohanna insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT partanenjuha insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT wartiovaarakirmo insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes
AT otonkoskitimo insulinmutationsimpairbetacelldevelopmentinapatientderivedipscmodelofneonataldiabetes