Cargando…
α-pinene regulates miR-221 and induces G(2)/M phase cell cycle arrest in human hepatocellular carcinoma cells
The naturally occurring compound α-pinene induces cell cycle arrest and antitumor activity. We examined effects of α-pinene on cell cycle regulation in hepatocellular carcinoma cells (HepG2) cells to establish a foundation for its development as a novel treatment for hepatocellular carcinoma (HCC)....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294613/ https://www.ncbi.nlm.nih.gov/pubmed/30473536 http://dx.doi.org/10.1042/BSR20180980 |
Sumario: | The naturally occurring compound α-pinene induces cell cycle arrest and antitumor activity. We examined effects of α-pinene on cell cycle regulation in hepatocellular carcinoma cells (HepG2) cells to establish a foundation for its development as a novel treatment for hepatocellular carcinoma (HCC). HepG2 cells treated with α-pinene exhibited dose-dependent growth inhibition as a result of G(2)/M-phase cell cycle arrest. Cell cycle arrest was associated with down-regulated cyclin-dependent kinase 1 (CDK1) and miR-221 levels and up-regulated levels of CDKN1B/p27, γ-H2AX, phosphorylated ATM, phosphorylated Chk2 and phosphorylated p53. Our observations are consistent with a model in which α-pinene inhibits miR221 expression, which leads to G(2)/M-phase arrest and activation of CDKN1B/p27-CDK1 and ATM-p53-Chk2 pathways that suppress human hepatoma tumor progression. Additionally, α-pinene was found to trigger oxidative stress and induce apoptosis of HepG2 cells. α-pinene, therefore, represents a potential chemotherapeutic compound for the treatment of HCC. |
---|