Cargando…

Genomic analysis of family data reveals additional genetic effects on intelligence and personality

Pedigree-based analyses of intelligence have reported that genetic differences account for 50–80% of the phenotypic variation. For personality traits these effects are smaller, with 34–48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated indi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hill, W. David, Arslan, Ruben C., Xia, Charley, Luciano, Michelle, Amador, Carmen, Navarro, Pau, Hayward, Caroline, Nagy, Reka, Porteous, David J., McIntosh, Andrew M., Deary, Ian J., Haley, Chris S., Penke, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294741/
https://www.ncbi.nlm.nih.gov/pubmed/29321673
http://dx.doi.org/10.1038/s41380-017-0005-1
Descripción
Sumario:Pedigree-based analyses of intelligence have reported that genetic differences account for 50–80% of the phenotypic variation. For personality traits these effects are smaller, with 34–48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around 30% for intelligence and between 0 and 15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele frequency, copy number variants, and structural variants. Using ~20,000 individuals in the Generation Scotland family cohort genotyped for ~700,000 single-nucleotide polymorphisms (SNPs), we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not tagged in GWAS of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that ~50% of differences in intelligence, and ~40% of the differences in education, can be explained by genetic effects when a larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic variants to individual differences in intelligence, and education is consistent with mutation-selection balance.