Cargando…

Visualizing the heterogeneous breakdown of a fractal microstructure during compaction by neutron dark-field imaging

Structural properties of cohesive powders are dominated by their microstructural composition. Powders with a fractal microstructure show particularly interesting properties during compaction where a microstructural transition and a fractal breakdown happen before compaction and force transport. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Harti, R. P., Valsecchi, J., Trtik, P., Mannes, D., Carminati, C., Strobl, M., Plomp, J., Duif, C. P., Grünzweig, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294745/
https://www.ncbi.nlm.nih.gov/pubmed/30552389
http://dx.doi.org/10.1038/s41598-018-35845-y
Descripción
Sumario:Structural properties of cohesive powders are dominated by their microstructural composition. Powders with a fractal microstructure show particularly interesting properties during compaction where a microstructural transition and a fractal breakdown happen before compaction and force transport. The study of this phenomenon has been challenging due to its long-range effect and the subsequent necessity to characterize these microstructural changes on a macroscopic scale. For the detailed investigation of the complex nature of powder compaction for various densification states along with the heterogeneous breakdown of the fractal microstructure we applied neutron dark-field imaging in combination with a variety of supporting techniques with various spatial resolutions, field-of-views and information depths. We used scanning electron microscopy to image the surface microstructure in a small field-of-view and X-ray tomography to image density variations in 3D with lower spatial resolution. Non-local spin-echo small-angle neutron scattering results are used to evaluate fitting models later used as input parameters for the neutron dark-field imaging data analysis. Finally, neutron dark-field imaging results in combination with supporting measurements using scanning electron microscopy, X-ray tomography and spin-echo small angle scattering allowed us to comprehensively study the heterogeneous transition from a fractal to a homogeneous microstructure of a cohesive powder in a quantitative manner.