Cargando…

Diverse Electronic and Magnetic Properties of Chlorination-Related Graphene Nanoribbons

The dramatic changes in electronic and magnetic properties are investigated using the first-principles calculations for halogen(X: Cl, Br, I, At)-adsorbed graphene nanoribbons. The rich and unique features are clearly revealed in the atoms-dominated electronic band structures, spin arrangement/magne...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Duy Khanh, Tran, Ngoc Thanh Thuy, Nguyen, Thanh Tien, Lin, Ming-Fa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294761/
https://www.ncbi.nlm.nih.gov/pubmed/30552385
http://dx.doi.org/10.1038/s41598-018-35627-6
Descripción
Sumario:The dramatic changes in electronic and magnetic properties are investigated using the first-principles calculations for halogen(X: Cl, Br, I, At)-adsorbed graphene nanoribbons. The rich and unique features are clearly revealed in the atoms-dominated electronic band structures, spin arrangement/magnetic moment, spatial charge distribution, and orbital- and spin-projected density of states. Halogen adsorptions can create the non-magnetic, ferromagnetic or anti-ferromagnetic metals, being mainly determined by concentrations and edge structures. The number of holes per unit cell increases with the adatom concentrations. Furthermore, magnetism becomes nonmagnetic when the adatom concentration is beyond 60% adsorption. There are many low-lying spin-dependent van Hove singularities. The diversified properties are attributed to the significant X-C bonds, the strong X-X bonds, and the adatom- and edge-carbon-induced spin states.