Cargando…
Jump rope vortex in liquid metal convection
Understanding large-scale circulations (LSCs) in turbulent convective systems is important for the study of stars, planets, and in many industrial applications. The canonical model of the LSC is quasi-planar with additional horizontal sloshing and torsional modes [Brown E, Ahlers G (2009) J Fluid Me...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294884/ https://www.ncbi.nlm.nih.gov/pubmed/30463942 http://dx.doi.org/10.1073/pnas.1812260115 |
Sumario: | Understanding large-scale circulations (LSCs) in turbulent convective systems is important for the study of stars, planets, and in many industrial applications. The canonical model of the LSC is quasi-planar with additional horizontal sloshing and torsional modes [Brown E, Ahlers G (2009) J Fluid Mech 638:383–400; Funfschilling D, Ahlers G (2004) Phys Rev Lett 92:194502; Xi HD et al. (2009) Phys Rev Lett 102:044503; Zhou Q et al. (2009) J Fluid Mech 630:367–390]. Using liquid gallium as the working fluid, we show, via coupled laboratory-numerical experiments in tanks with aspect ratios greater than unity ([Formula: see text]), that the LSC takes instead the form of a “jump rope vortex,” a strongly 3D mode that periodically orbits around the tank following a motion much like a jump rope on a playground. Further experiments show that this jump rope flow also exists in more viscous fluids such as water, albeit with a far smaller signal. Thus, this jump rope mode is an essential component of the turbulent convection that underlies our observations of natural systems. |
---|