Cargando…

Photoreceptive retinal ganglion cells control the information rate of the optic nerve

Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irr...

Descripción completa

Detalles Bibliográficos
Autores principales: Milosavljevic, Nina, Storchi, Riccardo, Eleftheriou, Cyril G., Colins, Andrea, Petersen, Rasmus S., Lucas, Robert J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294960/
https://www.ncbi.nlm.nih.gov/pubmed/30487225
http://dx.doi.org/10.1073/pnas.1810701115
_version_ 1783380812294520832
author Milosavljevic, Nina
Storchi, Riccardo
Eleftheriou, Cyril G.
Colins, Andrea
Petersen, Rasmus S.
Lucas, Robert J.
author_facet Milosavljevic, Nina
Storchi, Riccardo
Eleftheriou, Cyril G.
Colins, Andrea
Petersen, Rasmus S.
Lucas, Robert J.
author_sort Milosavljevic, Nina
collection PubMed
description Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.
format Online
Article
Text
id pubmed-6294960
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-62949602018-12-21 Photoreceptive retinal ganglion cells control the information rate of the optic nerve Milosavljevic, Nina Storchi, Riccardo Eleftheriou, Cyril G. Colins, Andrea Petersen, Rasmus S. Lucas, Robert J. Proc Natl Acad Sci U S A PNAS Plus Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain. National Academy of Sciences 2018-12-11 2018-11-28 /pmc/articles/PMC6294960/ /pubmed/30487225 http://dx.doi.org/10.1073/pnas.1810701115 Text en Copyright © 2018 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle PNAS Plus
Milosavljevic, Nina
Storchi, Riccardo
Eleftheriou, Cyril G.
Colins, Andrea
Petersen, Rasmus S.
Lucas, Robert J.
Photoreceptive retinal ganglion cells control the information rate of the optic nerve
title Photoreceptive retinal ganglion cells control the information rate of the optic nerve
title_full Photoreceptive retinal ganglion cells control the information rate of the optic nerve
title_fullStr Photoreceptive retinal ganglion cells control the information rate of the optic nerve
title_full_unstemmed Photoreceptive retinal ganglion cells control the information rate of the optic nerve
title_short Photoreceptive retinal ganglion cells control the information rate of the optic nerve
title_sort photoreceptive retinal ganglion cells control the information rate of the optic nerve
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294960/
https://www.ncbi.nlm.nih.gov/pubmed/30487225
http://dx.doi.org/10.1073/pnas.1810701115
work_keys_str_mv AT milosavljevicnina photoreceptiveretinalganglioncellscontroltheinformationrateoftheopticnerve
AT storchiriccardo photoreceptiveretinalganglioncellscontroltheinformationrateoftheopticnerve
AT eleftherioucyrilg photoreceptiveretinalganglioncellscontroltheinformationrateoftheopticnerve
AT colinsandrea photoreceptiveretinalganglioncellscontroltheinformationrateoftheopticnerve
AT petersenrasmuss photoreceptiveretinalganglioncellscontroltheinformationrateoftheopticnerve
AT lucasrobertj photoreceptiveretinalganglioncellscontroltheinformationrateoftheopticnerve