Cargando…
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
Identifying accurate associations between miRNAs and diseases is beneficial for diagnosis and treatment of human diseases. It is especially important to develop an efficient method to detect the association between miRNA and disease. Traditional experimental method has high precision, but its proces...
Autores principales: | Jiang, Limin, Ding, Yijie, Tang, Jijun, Guo, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295467/ https://www.ncbi.nlm.nih.gov/pubmed/30619454 http://dx.doi.org/10.3389/fgene.2018.00618 |
Ejemplares similares
-
Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data
por: Jiang, Limin, et al.
Publicado: (2019) -
LPI-SKF: Predicting lncRNA-Protein Interactions Using Similarity Kernel Fusions
por: Zhou, Yuan-Ke, et al.
Publicado: (2020) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019) -
SKF-LDA: Similarity Kernel Fusion for Predicting lncRNA-Disease Association
por: Xie, Guobo, et al.
Publicado: (2019) -
DDA-SKF: Predicting Drug–Disease Associations Using Similarity Kernel Fusion
por: Gao, Chu-Qiao, et al.
Publicado: (2022)