Cargando…
In-Place Modulation of Rectification in Tunneling Junctions Comprising Self-Assembled Monolayers
[Image: see text] This paper describes tunneling junctions comprising self-assembled monolayers that can be converted between resistor and diode functionality in-place. The rectification ratio is affected by the hydration of densely packed carboxylic acid groups at the interface between the top-cont...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295922/ https://www.ncbi.nlm.nih.gov/pubmed/30398891 http://dx.doi.org/10.1021/acs.nanolett.8b03042 |
_version_ | 1783380942535000064 |
---|---|
author | Ai, Yong Kovalchuk, Andrii Qiu, Xinkai Zhang, Yanxi Kumar, Sumit Wang, Xintai Kühnel, Martin Nørgaard, Kasper Chiechi, Ryan C. |
author_facet | Ai, Yong Kovalchuk, Andrii Qiu, Xinkai Zhang, Yanxi Kumar, Sumit Wang, Xintai Kühnel, Martin Nørgaard, Kasper Chiechi, Ryan C. |
author_sort | Ai, Yong |
collection | PubMed |
description | [Image: see text] This paper describes tunneling junctions comprising self-assembled monolayers that can be converted between resistor and diode functionality in-place. The rectification ratio is affected by the hydration of densely packed carboxylic acid groups at the interface between the top-contact and the monolayer. We studied this process by treatment with water and a water scavenger using three different top-contacts, eutectic Ga–In (EGaIn), conducting-probe atomic force microscopy (CP-AFM), and reduced graphene oxide (rGO), demonstrating that the phenomena is molecular in nature and is not platform-speciffc. We propose a mechanism in which the tunneling junctions convert to diode behavior through the lowering of the LUMO, which is suffcient to bring it close to resonance at positive bias, potentially assisted by a Stark shift. This shift in energy is supported by calculations and a change in polarization observed by X-ray photoelectron spectroscopy and Kelvin probe measurements. We demonstrate light-driven modulation using spiropyran as a photoacid, suggesting that any chemical process that is coupled to the release of small molecules that can tightly bind carboxylic acid groups can be used as an external stimulus to modulate rectification. The ability to convert a tunneling junction reversibly between a diode and a resistor via an effect that is intrinsic to the molecules in the junction extends the possible applications of Molecular Electronics to reconfigurable circuits and other new functionalities that do not have direct analogs in conventional semiconductor devices. |
format | Online Article Text |
id | pubmed-6295922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-62959222018-12-18 In-Place Modulation of Rectification in Tunneling Junctions Comprising Self-Assembled Monolayers Ai, Yong Kovalchuk, Andrii Qiu, Xinkai Zhang, Yanxi Kumar, Sumit Wang, Xintai Kühnel, Martin Nørgaard, Kasper Chiechi, Ryan C. Nano Lett [Image: see text] This paper describes tunneling junctions comprising self-assembled monolayers that can be converted between resistor and diode functionality in-place. The rectification ratio is affected by the hydration of densely packed carboxylic acid groups at the interface between the top-contact and the monolayer. We studied this process by treatment with water and a water scavenger using three different top-contacts, eutectic Ga–In (EGaIn), conducting-probe atomic force microscopy (CP-AFM), and reduced graphene oxide (rGO), demonstrating that the phenomena is molecular in nature and is not platform-speciffc. We propose a mechanism in which the tunneling junctions convert to diode behavior through the lowering of the LUMO, which is suffcient to bring it close to resonance at positive bias, potentially assisted by a Stark shift. This shift in energy is supported by calculations and a change in polarization observed by X-ray photoelectron spectroscopy and Kelvin probe measurements. We demonstrate light-driven modulation using spiropyran as a photoacid, suggesting that any chemical process that is coupled to the release of small molecules that can tightly bind carboxylic acid groups can be used as an external stimulus to modulate rectification. The ability to convert a tunneling junction reversibly between a diode and a resistor via an effect that is intrinsic to the molecules in the junction extends the possible applications of Molecular Electronics to reconfigurable circuits and other new functionalities that do not have direct analogs in conventional semiconductor devices. American Chemical Society 2018-11-06 2018-12-12 /pmc/articles/PMC6295922/ /pubmed/30398891 http://dx.doi.org/10.1021/acs.nanolett.8b03042 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Ai, Yong Kovalchuk, Andrii Qiu, Xinkai Zhang, Yanxi Kumar, Sumit Wang, Xintai Kühnel, Martin Nørgaard, Kasper Chiechi, Ryan C. In-Place Modulation of Rectification in Tunneling Junctions Comprising Self-Assembled Monolayers |
title | In-Place Modulation of Rectification in Tunneling
Junctions Comprising Self-Assembled Monolayers |
title_full | In-Place Modulation of Rectification in Tunneling
Junctions Comprising Self-Assembled Monolayers |
title_fullStr | In-Place Modulation of Rectification in Tunneling
Junctions Comprising Self-Assembled Monolayers |
title_full_unstemmed | In-Place Modulation of Rectification in Tunneling
Junctions Comprising Self-Assembled Monolayers |
title_short | In-Place Modulation of Rectification in Tunneling
Junctions Comprising Self-Assembled Monolayers |
title_sort | in-place modulation of rectification in tunneling
junctions comprising self-assembled monolayers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295922/ https://www.ncbi.nlm.nih.gov/pubmed/30398891 http://dx.doi.org/10.1021/acs.nanolett.8b03042 |
work_keys_str_mv | AT aiyong inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT kovalchukandrii inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT qiuxinkai inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT zhangyanxi inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT kumarsumit inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT wangxintai inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT kuhnelmartin inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT nørgaardkasper inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers AT chiechiryanc inplacemodulationofrectificationintunnelingjunctionscomprisingselfassembledmonolayers |