Cargando…
Bayesian geostatistical modelling of PM(10) and PM(2.5) surface level concentrations in Europe using high-resolution satellite-derived products
Air quality monitoring across Europe is mainly based on in situ ground stations, which are too sparse to accurately assess the exposure effects of air pollution for the entire continent. The demand for precise predictive models that estimate gridded geophysical parameters of ambient air at high spat...
Autores principales: | Beloconi, Anton, Chrysoulakis, Nektarios, Lyapustin, Alexei, Utzinger, Jürg, Vounatsou, Penelope |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295977/ https://www.ncbi.nlm.nih.gov/pubmed/30179765 http://dx.doi.org/10.1016/j.envint.2018.08.041 |
Ejemplares similares
-
Bayesian geostatistical modelling of high-resolution [Formula: see text] exposure in Europe combining data from monitors, satellites and chemical transport models
por: Beloconi, Anton, et al.
Publicado: (2020) -
Bayesian Geostatistical Modeling of Leishmaniasis Incidence in Brazil
por: Karagiannis-Voules, Dimitrios-Alexios, et al.
Publicado: (2013) -
Bayesian geostatistical modelling of soil-transmitted helminth survey data in the People’s Republic of China
por: Lai, Ying-Si, et al.
Publicado: (2013) -
Risk mapping of clonorchiasis in the People’s Republic of China: A systematic review and Bayesian geostatistical analysis
por: Lai, Ying-Si, et al.
Publicado: (2017) -
10-year spatial and temporal trends of PM(2.5) concentrations in the southeastern US estimated using high-resolution satellite data
por: Hu, X., et al.
Publicado: (2014)