Cargando…

Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5’RACE analysis

BACKGROUND: Phosphorus is an important macronutrient that is severely lacking in soils. In plants, specific microRNAs (miRNAs) essential for nutrient management and the regulation of stress responses are responsible for the control of many phosphate starvation responses. Further understanding of con...

Descripción completa

Detalles Bibliográficos
Autores principales: Huen, Amanda, Bally, Julia, Smith, Penelope
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296076/
https://www.ncbi.nlm.nih.gov/pubmed/30558535
http://dx.doi.org/10.1186/s12864-018-5258-9
Descripción
Sumario:BACKGROUND: Phosphorus is an important macronutrient that is severely lacking in soils. In plants, specific microRNAs (miRNAs) essential for nutrient management and the regulation of stress responses are responsible for the control of many phosphate starvation responses. Further understanding of conserved and species-specific microRNA species has potential implications for the development of crops tolerant to soils with low phosphate. RESULTS: This study identified and characterised phosphate starvation-responsive miRNAs in the native Australian tobacco Nicotiana benthamiana. Small RNA libraries were constructed and sequenced from phosphate-starved plant leaves, stems and roots. Twenty-four conserved miRNA families and 36 species-specific miRNAs were identified. The majority of highly phosphate starvation-responsive miRNAs were highly conserved, comprising of members from the miR399, miR827, and miR2111 families. In addition, two miRNA-star species were identified to be phosphate starvation-responsive. A total of seven miRNA targets were confirmed using RLM-5’RACE to be cleaved by five miRNA families, including two confirmed cleavage targets for Nbe-miR399 species, one for Nbe-miR2111, and two for Nbe-miR398. A number of N. benthamiana-specific features for conserved miRNAs were identified, including species-specific miRNA targets predicted or confirmed for miR399, miR827, and miR398. CONCLUSIONS: Our results give an insight into the phosphate starvation-responsive miRNAs of Nicotiana benthamiana, and indicate that the phosphate starvation response pathways in N. benthamiana contain both highly conserved and species-specific components. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5258-9) contains supplementary material, which is available to authorized users.