Cargando…
Analyzing the similarity of samples and genes by MG-PCC algorithm, t-SNE-SS and t-SNE-SG maps
BACKGROUND: For analyzing these gene expression data sets under different samples, clustering and visualizing samples and genes are important methods. However, it is difficult to integrate clustering and visualizing techniques when the similarities of samples and genes are defined by PCC(Person corr...
Autores principales: | Jia, Xingang, Han, Qiuhong, Lu, Zuhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296107/ https://www.ncbi.nlm.nih.gov/pubmed/30558536 http://dx.doi.org/10.1186/s12859-018-2495-5 |
Ejemplares similares
-
Conditional t-SNE: more informative t-SNE embeddings
por: Kang, Bo, et al.
Publicado: (2020) -
Visualization of SNPs with t-SNE
por: Platzer, Alexander
Publicado: (2013) -
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
por: Häkkinen, Antti, et al.
Publicado: (2020) -
Visualization of genetic disease-phenotype similarities by multiple maps t-SNE with Laplacian regularization
por: Xu, Weiwei, et al.
Publicado: (2014) -
Cosmological parameters from High Redshift SNe
por: Kirshner, R P
Publicado: (1998)