Cargando…
Automatic interpretation of otoliths using deep learning
The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive...
Autores principales: | Moen, Endre, Handegard, Nils Olav, Allken, Vaneeda, Albert, Ole Thomas, Harbitz, Alf, Malde, Ketil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296523/ https://www.ncbi.nlm.nih.gov/pubmed/30557335 http://dx.doi.org/10.1371/journal.pone.0204713 |
Ejemplares similares
-
Age prediction by deep learning applied to Greenland halibut (Reinhardtius hippoglossoides) otolith images
por: Martinsen, Iver, et al.
Publicado: (2022) -
Leveraging uncertainty information from deep neural networks for disease detection
por: Leibig, Christian, et al.
Publicado: (2017) -
The Subcellular Distribution of T-Type Ca(2+) Channels in Interneurons of the Lateral Geniculate Nucleus
por: Allken, Vaneeda, et al.
Publicado: (2014) -
Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
por: Zhang, Dongdong, et al.
Publicado: (2021) -
Explaining decisions of deep neural networks used for fish age prediction
por: Ordoñez, Alba, et al.
Publicado: (2020)