Cargando…
Using a stacked-autoencoder neural network model to estimate sea state bias for a radar altimeter
This paper constructed a stacked-autoencoder neural network model (SAE model) to estimate sea state bias (SSB) based on radar altimeter data. Six cycles of the geophysical data record (GDR) from Jason-1/2 radar altimeters were used as a training dataset, and the other 2 cycles of the GDR from Jason-...
Autores principales: | Miao, Xiangying, Miao, Hongli, Jia, Yongjun, Guo, Yingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296554/ https://www.ncbi.nlm.nih.gov/pubmed/30557315 http://dx.doi.org/10.1371/journal.pone.0208989 |
Ejemplares similares
-
Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder
por: Kang, Miao, et al.
Publicado: (2017) -
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
por: Protopapadakis, Eftychios, et al.
Publicado: (2017) -
Effects of Interferometric Radar Altimeter Errors on Marine Gravity Field Inversion
por: Wan, Xiaoyun, et al.
Publicado: (2020) -
Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine
por: Zhao, Feixiang, et al.
Publicado: (2018) -
Performances Study of Interferometric Radar Altimeters: from the Instrument to the Global Mission Definition
por: Enjolras, Vivien, et al.
Publicado: (2006)