Cargando…
An improved DBSCAN algorithm based on cell-like P systems with promoters and inhibitors
Density-based spatial clustering of applications with noise (DBSCAN) algorithm can find clusters of arbitrary shape, while the noise points can be removed. Membrane computing is a novel research branch of bio-inspired computing, which seeks to discover new computational models/framework from biologi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296794/ https://www.ncbi.nlm.nih.gov/pubmed/30557333 http://dx.doi.org/10.1371/journal.pone.0200751 |
Sumario: | Density-based spatial clustering of applications with noise (DBSCAN) algorithm can find clusters of arbitrary shape, while the noise points can be removed. Membrane computing is a novel research branch of bio-inspired computing, which seeks to discover new computational models/framework from biological cells. The obtained parallel and distributed computing models are usually called P systems. In this work, DBSCAN algorithm is improved by using parallel evolution mechanism and hierarchical membrane structure in cell-like P systems with promoters and inhibitors, where promoters and inhibitors are utilized to regulate parallelism of objects evolution. Experiment results show that the proposed algorithm performs well in big cluster analysis. The time complexity is improved to O(n), in comparison with conventional DBSCAN of O(n(2)). The results give some hints to improve conventional algorithms by using the hierarchical framework and parallel evolution mechanism in membrane computing models. |
---|