Cargando…
CT Slice Thickness and Convolution Kernel Affect Performance of a Radiomic Model for Predicting EGFR Status in Non-Small Cell Lung Cancer: A Preliminary Study
We evaluated whether the optimal selection of CT reconstruction settings enables the construction of a radiomics model to predict epidermal growth factor receptor (EGFR) mutation status in primary lung adenocarcinoma (LAC) using standard of care CT images. Fifty-one patients (EGFR:wildtype = 23:28)...
Autores principales: | Li, Yajun, Lu, Lin, Xiao, Manjun, Dercle, Laurent, Huang, Yue, Zhang, Zishu, Schwartz, Lawrence H., Li, Daiqiang, Zhao, Binsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297245/ https://www.ncbi.nlm.nih.gov/pubmed/30559455 http://dx.doi.org/10.1038/s41598-018-36421-0 |
Ejemplares similares
-
Convolutional Neural Network Addresses the Confounding Impact of CT Reconstruction Kernels on Radiomics Studies
por: Yoon, Jin H., et al.
Publicado: (2021) -
Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule
por: He, Lan, et al.
Publicado: (2016) -
Toward radiomics for assessment of response to systemic therapies in lung cancer
por: Sun, Shawn, et al.
Publicado: (2020) -
Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
por: Lu, Lin, et al.
Publicado: (2021) -
Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy
por: Dercle, Laurent, et al.
Publicado: (2022)