Cargando…

P4HB knockdown induces human HT29 colon cancer cell apoptosis through the generation of reactive oxygen species and inactivation of STAT3 signaling

Colon cancer is the second most lethal malignancy worldwide. A better understanding of colon cancer at the molecular level may increase overall survival rates. Previous studies have indicated that prolyl 4-hydroxylase, β polypeptide (P4HB) is associated with tumorigenesis in colon cancer; however, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Ying, Yang, Jing, Zhang, Qilin, Xu, Qihua, Lu, Lihua, Wang, Jiening, Xia, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297753/
https://www.ncbi.nlm.nih.gov/pubmed/30431122
http://dx.doi.org/10.3892/mmr.2018.9660
Descripción
Sumario:Colon cancer is the second most lethal malignancy worldwide. A better understanding of colon cancer at the molecular level may increase overall survival rates. Previous studies have indicated that prolyl 4-hydroxylase, β polypeptide (P4HB) is associated with tumorigenesis in colon cancer; however, its role and molecular mechanisms in colon cancer remain unclear. In the present study, the cellular responses to P4HB in human colon cancer cell lines were investigated by proliferation and apoptosis assays, western blotting, and immunohistochemistry. The results showed that expression of P4HB was higher in colon cancer tissues compared within adjacent normal tissues. P4HB knockdown increased the apoptosis of human HT29 cells. Furthermore, P4HB knockdown reduced the activation of signal transducer and activator of transcription 3 (STAT3) and promoted accumulation of reactive oxygen species (ROS). Inhibiting the accumulation of ROS abrogated the increased cell apoptosis induced by P4HB knockdown. Notably, decreased ROS levels effectively antagonized the effects of P4HB on STAT3 inactivation. In conclusion, these findings suggested that P4HB knockdown may induce HT29 human colon cancer cell apoptosis through the generation of ROS and inactivation of the STAT3 signaling pathway.