Cargando…

Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway

Wear particles generated between the interface of joints and artificial joint replacements are one of the primary causes of aseptic loosening. The aim of the present study was to investigate the influence of titanium (Ti) particles on the apoptosis and autophagy of osteoblasts, and probe into the po...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qing, Zhang, Xiao-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297762/
https://www.ncbi.nlm.nih.gov/pubmed/30387825
http://dx.doi.org/10.3892/mmr.2018.9622
_version_ 1783381199986622464
author Zhang, Qing
Zhang, Xiao-Feng
author_facet Zhang, Qing
Zhang, Xiao-Feng
author_sort Zhang, Qing
collection PubMed
description Wear particles generated between the interface of joints and artificial joint replacements are one of the primary causes of aseptic loosening. The aim of the present study was to investigate the influence of titanium (Ti) particles on the apoptosis and autophagy of osteoblasts, and probe into the potential use of hyperoside (Hy) as a protector for osteoblasts in Ti particle-induced injury. MC3T3-E1 cells were divided into control, Ti, Hy-1+Ti and Hy-2+Ti groups. Cell viability was detected using a Cell Counting Kit-8 assay. Apoptosis and autophagy rates were determined using flow cytometry. Expression levels of apoptosis-associated genes, including caspase-3, apoptosis regulator BAX, apoptosis regulator Bcl-2 and cellular tumor antigen p53, in addition to autophagy-associated genes, including Beclin1 and microtubule-associated protein light chain 3 conversion LC3-II/I, were measured using reverse transcription-quantitative polymerase chain reaction and western blotting. Activation of the tumor necrosis factor ligand superfamily member 12 (TWEAK)-mitogen activated protein kinase 11 (p38) mitogen activated protein kinase (MAPK) pathway was observed by western blotting. The present study demonstrated that pretreatment with Hy was able to increase cell viability and proliferation, and decrease apoptosis and autophagy to protect MC3T3-E1 cells against Ti particle-induced damage. Activation of the TWEAK-p38 pathway contributed to the repair processes of treatment with Hy. The present results suggested that Hy protected osteoblasts against Ti particle-induced damage by regulating the TWEAK-p38 pathway, which suggested the potential of Hy as a protective agent for bones.
format Online
Article
Text
id pubmed-6297762
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-62977622018-12-26 Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway Zhang, Qing Zhang, Xiao-Feng Mol Med Rep Articles Wear particles generated between the interface of joints and artificial joint replacements are one of the primary causes of aseptic loosening. The aim of the present study was to investigate the influence of titanium (Ti) particles on the apoptosis and autophagy of osteoblasts, and probe into the potential use of hyperoside (Hy) as a protector for osteoblasts in Ti particle-induced injury. MC3T3-E1 cells were divided into control, Ti, Hy-1+Ti and Hy-2+Ti groups. Cell viability was detected using a Cell Counting Kit-8 assay. Apoptosis and autophagy rates were determined using flow cytometry. Expression levels of apoptosis-associated genes, including caspase-3, apoptosis regulator BAX, apoptosis regulator Bcl-2 and cellular tumor antigen p53, in addition to autophagy-associated genes, including Beclin1 and microtubule-associated protein light chain 3 conversion LC3-II/I, were measured using reverse transcription-quantitative polymerase chain reaction and western blotting. Activation of the tumor necrosis factor ligand superfamily member 12 (TWEAK)-mitogen activated protein kinase 11 (p38) mitogen activated protein kinase (MAPK) pathway was observed by western blotting. The present study demonstrated that pretreatment with Hy was able to increase cell viability and proliferation, and decrease apoptosis and autophagy to protect MC3T3-E1 cells against Ti particle-induced damage. Activation of the TWEAK-p38 pathway contributed to the repair processes of treatment with Hy. The present results suggested that Hy protected osteoblasts against Ti particle-induced damage by regulating the TWEAK-p38 pathway, which suggested the potential of Hy as a protective agent for bones. D.A. Spandidos 2019-01 2018-11-02 /pmc/articles/PMC6297762/ /pubmed/30387825 http://dx.doi.org/10.3892/mmr.2018.9622 Text en Copyright: © Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhang, Qing
Zhang, Xiao-Feng
Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
title Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
title_full Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
title_fullStr Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
title_full_unstemmed Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
title_short Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3-E1 cells by regulating TNF-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
title_sort hyperoside decreases the apoptosis and autophagy rates of osteoblast mc3t3-e1 cells by regulating tnf-like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297762/
https://www.ncbi.nlm.nih.gov/pubmed/30387825
http://dx.doi.org/10.3892/mmr.2018.9622
work_keys_str_mv AT zhangqing hyperosidedecreasestheapoptosisandautophagyratesofosteoblastmc3t3e1cellsbyregulatingtnflikeweakinducerofapoptosisandthep38mitogenactivatedproteinkinasepathway
AT zhangxiaofeng hyperosidedecreasestheapoptosisandautophagyratesofosteoblastmc3t3e1cellsbyregulatingtnflikeweakinducerofapoptosisandthep38mitogenactivatedproteinkinasepathway