Cargando…

Magnetization transfer contrast MRI in GFP-tagged live bacteria

Green fluorescent protein (GFP) is a widely utilized molecular reporter of gene expression. However, its use in in vivo imaging has been restricted to transparent tissue mainly due to the tissue penetrance limitation of optical imaging. Magnetization transfer contrast (MTC) is a magnetic resonance i...

Descripción completa

Detalles Bibliográficos
Autores principales: Righi, Valeria, Starkey, Melissa, Dai, George, Rahme, Laurence G., Tzika, Aria A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297796/
https://www.ncbi.nlm.nih.gov/pubmed/30483743
http://dx.doi.org/10.3892/mmr.2018.9669
Descripción
Sumario:Green fluorescent protein (GFP) is a widely utilized molecular reporter of gene expression. However, its use in in vivo imaging has been restricted to transparent tissue mainly due to the tissue penetrance limitation of optical imaging. Magnetization transfer contrast (MTC) is a magnetic resonance imaging (MRI) methodology currently utilized to detect macromolecule changes such as decrease in myelin and increase in collagen content. MTC MRI imaging was performed to detect GFP in both in vitro cells and in an in vivo mouse model to determine if MTC imaging could be used to detect infection from Pseudomonas aeruginosa in murine tissues. It was demonstrated that the approach produces values that are protein specific and concentration dependent. This method provides a valuable, non-invasive imaging tool to study the impact of novel antibacterial therapeutics on bacterial proliferation and perhaps viability within the host system, and could potentially suggest the modulation of bacterial gene expression within the host when exposed to such compounds.