Cargando…
Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats
Consistent, sensitive biomarkers of acute kidney injury in animal models and humans have historically represented a poorly met need for investigators and clinicians. Detection of early kidney damage using urinary biomarkers is essential to assess the adversity in preclinical toxicology studies, whic...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297903/ https://www.ncbi.nlm.nih.gov/pubmed/30581763 http://dx.doi.org/10.1016/j.toxrep.2018.11.015 |
_version_ | 1783381227906007040 |
---|---|
author | Udupa, Venkatesha Prakash, Veeru |
author_facet | Udupa, Venkatesha Prakash, Veeru |
author_sort | Udupa, Venkatesha |
collection | PubMed |
description | Consistent, sensitive biomarkers of acute kidney injury in animal models and humans have historically represented a poorly met need for investigators and clinicians. Detection of early kidney damage using urinary biomarkers is essential to assess the adversity in preclinical toxicology studies, which will help in reducing attrition of lead candidates in drug development. This study was undertaken to evaluate recently identified urinary biomarkers use in identifying acute kidney injury compared to traditional serum markers in experimentally induced nephrotoxicity in male Sprague Dawley (SD) rats. Gentamicin induced nephrotoxicity in Sprague Dawley rats is commonly detected using serum markers and histological evaluation of kidneys. Gentamicin, an aminoglycoside was administered at 30 and 100 mg/kg/day dose (subcutaneous) for seven consecutive days to induce nephrotoxicity. On day 4 and day 8 post treatment, serum and urine samples from these rats were analyzed for traditional serum/urine and novel urinary biomarkers and microscopic evaluation of kidneys. On Day 4, no statistically significant change in serum BUN and creatinine level, but increase in urinary microalbumin (mALB) and urinary protein (UP) noticed in both doses of Gentamicin treated rats. On Day 8 significant increase in serum blood urea nitrogen (BUN), serum creatinine, UP and urinary mALB at 100 mg/kg/day, increase in total protein and decrease in albumin in 30 and 100 mg/kg/day and decrease in BUN and creatinine at 100 mg/kg of Gentamicin treated rats. The BUN and creatinine levels or fold change was comparable between control and 30 mg/kg of Gentamicin on Day 8, however, there was 5.6 and 3.4 fold change in BUN and Creatinine level noticed at 100 mg/kg/day of Gentamicin. On Day 4 and 8, significant increase in urinary levels of Clusterin was noted with animals administered both doses of Gentamicin. Similarly, significant increase in urinary levels of kidney injury molecule 1 (Kim-1), Cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) were noticed with animals administered Gentamicin at 100 mg/kg/day on both Day 4 and 8. All these markers have shown dose-dependent change. Histological changes seen on Day 4 and Day 8 were of minimal to mild and moderate to severe in nature at both doses, respectively. The results demonstrated the sensitiveness and accuracy of detecting acute renal damage with novel urinary biomarkers, and their use in diagnosing early kidney damage. This helps in adversity assessment in animal toxicology studies and advocating right treatment to patients who have early renal injury which otherwise can only be diagnosed by elevated levels of traditional biomarkers in blood only after >30% of kidneys is damaged. |
format | Online Article Text |
id | pubmed-6297903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-62979032018-12-21 Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats Udupa, Venkatesha Prakash, Veeru Toxicol Rep Article Consistent, sensitive biomarkers of acute kidney injury in animal models and humans have historically represented a poorly met need for investigators and clinicians. Detection of early kidney damage using urinary biomarkers is essential to assess the adversity in preclinical toxicology studies, which will help in reducing attrition of lead candidates in drug development. This study was undertaken to evaluate recently identified urinary biomarkers use in identifying acute kidney injury compared to traditional serum markers in experimentally induced nephrotoxicity in male Sprague Dawley (SD) rats. Gentamicin induced nephrotoxicity in Sprague Dawley rats is commonly detected using serum markers and histological evaluation of kidneys. Gentamicin, an aminoglycoside was administered at 30 and 100 mg/kg/day dose (subcutaneous) for seven consecutive days to induce nephrotoxicity. On day 4 and day 8 post treatment, serum and urine samples from these rats were analyzed for traditional serum/urine and novel urinary biomarkers and microscopic evaluation of kidneys. On Day 4, no statistically significant change in serum BUN and creatinine level, but increase in urinary microalbumin (mALB) and urinary protein (UP) noticed in both doses of Gentamicin treated rats. On Day 8 significant increase in serum blood urea nitrogen (BUN), serum creatinine, UP and urinary mALB at 100 mg/kg/day, increase in total protein and decrease in albumin in 30 and 100 mg/kg/day and decrease in BUN and creatinine at 100 mg/kg of Gentamicin treated rats. The BUN and creatinine levels or fold change was comparable between control and 30 mg/kg of Gentamicin on Day 8, however, there was 5.6 and 3.4 fold change in BUN and Creatinine level noticed at 100 mg/kg/day of Gentamicin. On Day 4 and 8, significant increase in urinary levels of Clusterin was noted with animals administered both doses of Gentamicin. Similarly, significant increase in urinary levels of kidney injury molecule 1 (Kim-1), Cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) were noticed with animals administered Gentamicin at 100 mg/kg/day on both Day 4 and 8. All these markers have shown dose-dependent change. Histological changes seen on Day 4 and Day 8 were of minimal to mild and moderate to severe in nature at both doses, respectively. The results demonstrated the sensitiveness and accuracy of detecting acute renal damage with novel urinary biomarkers, and their use in diagnosing early kidney damage. This helps in adversity assessment in animal toxicology studies and advocating right treatment to patients who have early renal injury which otherwise can only be diagnosed by elevated levels of traditional biomarkers in blood only after >30% of kidneys is damaged. Elsevier 2018-11-30 /pmc/articles/PMC6297903/ /pubmed/30581763 http://dx.doi.org/10.1016/j.toxrep.2018.11.015 Text en © 2019 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Udupa, Venkatesha Prakash, Veeru Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
title | Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
title_full | Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
title_fullStr | Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
title_full_unstemmed | Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
title_short | Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
title_sort | gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297903/ https://www.ncbi.nlm.nih.gov/pubmed/30581763 http://dx.doi.org/10.1016/j.toxrep.2018.11.015 |
work_keys_str_mv | AT udupavenkatesha gentamicininducedacuterenaldamageanditsevaluationusingurinarybiomarkersinrats AT prakashveeru gentamicininducedacuterenaldamageanditsevaluationusingurinarybiomarkersinrats |