Cargando…
Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease
In this paper, we present a novel Bayesian adaptive dual controller (ADC) for autonomously programming deep brain stimulation devices. We evaluated the Bayesian ADC’s performance in the context of reducing beta power in a computational model of Parkinson’s disease, in which it was tasked with findin...
Autores principales: | Grado, Logan L., Johnson, Matthew D., Netoff, Theoden I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298687/ https://www.ncbi.nlm.nih.gov/pubmed/30521519 http://dx.doi.org/10.1371/journal.pcbi.1006606 |
Ejemplares similares
-
Effects of spike-time dependent plasticity on deep brain stimulation of the basal ganglia for treatment of Parkinson's disease
por: Grado, Logan L, et al.
Publicado: (2015) -
In silico development and validation of Bayesian methods for optimizing deep brain stimulation to enhance cognitive control
por: Nagrale, Sumedh S, et al.
Publicado: (2023) -
Semi-automated approaches to optimize deep brain stimulation parameters in Parkinson’s disease
por: Louie, Kenneth H., et al.
Publicado: (2021) -
Closed-loop approach to tuning deep brain stimulation parameters for Parkinson's disease
por: Holt, Abbey B, et al.
Publicado: (2015) -
Predicting deep-brain stimulation frequencies to suppress pathological population oscillations in a network model of Parkinson's disease
por: Holt, Abbey B, et al.
Publicado: (2013)