Cargando…

Up-Regulation of MiR-1915 Inhibits Proliferation, Invasion, and Migration of Helicobacter pylori-Infected Gastric Cancer Cells via Targeting RAGE

PURPOSE: Helicobacter pylori (HP)-infected gastric cancer (GC) is known to be a fatal malignant tumor, but the molecular mechanisms underlying its proliferation, invasion, and migration remain far from being completely understood. Our aim in this study was to explore miR-1915 expression and its mole...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xin-cai, Zhang, Wen-bin, Li, Chun-xing, Gao, Hua, Pei, Qi, Cao, Bo-wei, He, Tie-han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Yonsei University College of Medicine 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298885/
https://www.ncbi.nlm.nih.gov/pubmed/30554489
http://dx.doi.org/10.3349/ymj.2019.60.1.38
Descripción
Sumario:PURPOSE: Helicobacter pylori (HP)-infected gastric cancer (GC) is known to be a fatal malignant tumor, but the molecular mechanisms underlying its proliferation, invasion, and migration remain far from being completely understood. Our aim in this study was to explore miR-1915 expression and its molecular mechanisms in regulating proliferation, invasion, and migration of HP-infected GC cells. MATERIALS AND METHODS: Quantitative real-time PCR and western blot analysis were performed to determine miR-1915 and receptor for advanced glycation end product (RAGE) expression in HP-infected GC tissues and gastritis tissues, as well as human gastric mucosal cell line GES-1 and human GC cell lines SGC-7901 and MKN45. CCK8 assay and transwell assay were performed to detect the proliferation, invasion, and migration capabilities. MiR-1915 mimics and miR-1915 inhibitor were transfected into GC cells to determine the target relationship between miR-1915 and RAGE. RESULTS: MiR-1915 was under-expressed, while RAGE was over-expressed in HP-infected GC tissues and GC cells. Over-expressed miR-1915 could attenuate cellular proliferation, invasion, and migration capacities. RAGE was confirmed to be the target gene of miR-1915 by bioinformatics analysis and luciferase reporter assay. Moreover, HP-infected GC cellular proliferation, invasion, and migration were inhibited after treatment with pcDNA-RAGE. CONCLUSION: MiR-1915 exerted tumor-suppressive effects on cellular proliferation, invasion, and migration of HP-infected GC cells via targeting RAGE, which provided an innovative target candidate for treatment of HP-infected GC.