Cargando…
Abundance and distribution of Archaea in the subseafloor sedimentary biosphere
Subseafloor sedimentary environments harbor a remarkable number of microorganisms that constitute anaerobic and aerobic microbial ecosystems beneath the ocean margins and open-ocean gyres, respectively. Microbial biomass and diversity richness generally decrease with increasing sediment depth and bu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298964/ https://www.ncbi.nlm.nih.gov/pubmed/30116037 http://dx.doi.org/10.1038/s41396-018-0253-3 |
Sumario: | Subseafloor sedimentary environments harbor a remarkable number of microorganisms that constitute anaerobic and aerobic microbial ecosystems beneath the ocean margins and open-ocean gyres, respectively. Microbial biomass and diversity richness generally decrease with increasing sediment depth and burial time. However, there has been a long-standing debate over the contribution and distribution of Archaea in the subseafloor sedimentary biosphere. Here we show the global quantification of archaeal and bacterial 16S rRNA genes in 221 sediment core samples obtained from diverse oceanographic settings through scientific ocean drilling using microfluidic digital PCR. We estimated that archaeal cells constitute 37.3% of the total microbial cells (40.0% and 12.8% in the ocean margin and open-ocean sites, respectively), corresponding to 1.1 × 10(29) cells on Earth. In addition, the relative abundance of archaeal 16S rRNA genes generally decreased with the depth of water in the overlying sedimentary habitat, suggesting that Archaea may be more sensitive to nutrient quality and quantity supplied from the overlying ocean. |
---|