Cargando…

Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae

There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Zumajo-Cardona, Cecilia, Pabón-Mora, Natalia, Ambrose, Barbara A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299025/
https://www.ncbi.nlm.nih.gov/pubmed/30619406
http://dx.doi.org/10.3389/fpls.2018.01833
_version_ 1783381400024514560
author Zumajo-Cardona, Cecilia
Pabón-Mora, Natalia
Ambrose, Barbara A.
author_facet Zumajo-Cardona, Cecilia
Pabón-Mora, Natalia
Ambrose, Barbara A.
author_sort Zumajo-Cardona, Cecilia
collection PubMed
description There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall apart through the dehiscence zone leaving the seeds attached to the remaining medial tissue, called the replum. Proper replum development in A. thaliana is mediated by REPLUMLESS (RPL), a TALE Homeodomain protein. RPL represses the valve margin genetic program and the downstream dehiscence zone formation in the medial tissue of the siliques and RPL orthologs have conserved roles across the Brassicaceae eudicots. A RPL homolog, qSH1, has been studied in rice, a monocot, and plays a role in fruit shedding making it difficult to predict functional evolution of this gene lineage across angiosperms. Although RPL orthologs have been identified across all angiosperms, expression and functional analyses are scarce. In order to fill the phylogenetic gap between the Brassicaceae and monocots we have characterized the expression patterns of RPL homologs in two poppies with different fruit types, Bocconia frutescens with operculate valvate dehiscence and a persistent medial tissue, similar to a replum, and Papaver somniferum, a poppy with persistent medial tissue in between the multicarpellate gynoecia. We found that RPL homologs in Papaveraceae have broad expression patterns during plant development; in the shoot apical meristem, during flowering transition and in many floral organs, especially the carpels. These patterns are similar to those of RPL in A. thaliana. However, our results suggest that RPL does not have conserved roles in the maintenance of medial persistent tissues of fruits but may be involved with establishing the putative dehiscence zone in dry poppy fruits.
format Online
Article
Text
id pubmed-6299025
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-62990252019-01-07 Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae Zumajo-Cardona, Cecilia Pabón-Mora, Natalia Ambrose, Barbara A. Front Plant Sci Plant Science There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall apart through the dehiscence zone leaving the seeds attached to the remaining medial tissue, called the replum. Proper replum development in A. thaliana is mediated by REPLUMLESS (RPL), a TALE Homeodomain protein. RPL represses the valve margin genetic program and the downstream dehiscence zone formation in the medial tissue of the siliques and RPL orthologs have conserved roles across the Brassicaceae eudicots. A RPL homolog, qSH1, has been studied in rice, a monocot, and plays a role in fruit shedding making it difficult to predict functional evolution of this gene lineage across angiosperms. Although RPL orthologs have been identified across all angiosperms, expression and functional analyses are scarce. In order to fill the phylogenetic gap between the Brassicaceae and monocots we have characterized the expression patterns of RPL homologs in two poppies with different fruit types, Bocconia frutescens with operculate valvate dehiscence and a persistent medial tissue, similar to a replum, and Papaver somniferum, a poppy with persistent medial tissue in between the multicarpellate gynoecia. We found that RPL homologs in Papaveraceae have broad expression patterns during plant development; in the shoot apical meristem, during flowering transition and in many floral organs, especially the carpels. These patterns are similar to those of RPL in A. thaliana. However, our results suggest that RPL does not have conserved roles in the maintenance of medial persistent tissues of fruits but may be involved with establishing the putative dehiscence zone in dry poppy fruits. Frontiers Media S.A. 2018-12-12 /pmc/articles/PMC6299025/ /pubmed/30619406 http://dx.doi.org/10.3389/fpls.2018.01833 Text en Copyright © 2018 Zumajo-Cardona, Pabón-Mora and Ambrose. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Zumajo-Cardona, Cecilia
Pabón-Mora, Natalia
Ambrose, Barbara A.
Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae
title Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae
title_full Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae
title_fullStr Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae
title_full_unstemmed Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae
title_short Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae
title_sort duplication and diversification of replumless – a case study in the papaveraceae
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299025/
https://www.ncbi.nlm.nih.gov/pubmed/30619406
http://dx.doi.org/10.3389/fpls.2018.01833
work_keys_str_mv AT zumajocardonacecilia duplicationanddiversificationofreplumlessacasestudyinthepapaveraceae
AT pabonmoranatalia duplicationanddiversificationofreplumlessacasestudyinthepapaveraceae
AT ambrosebarbaraa duplicationanddiversificationofreplumlessacasestudyinthepapaveraceae