Cargando…
Self-adaptive iterative method for solving boundedly Lipschitz continuous and strongly monotone variational inequalities
In this paper we introduce a new self-adaptive iterative algorithm for solving the variational inequalities in real Hilbert spaces, denoted by [Formula: see text] . Here [Formula: see text] is a nonempty, closed and convex set and [Formula: see text] is boundedly Lipschitz continuous (i.e., Lipschit...
Autores principales: | He, Songnian, Liu, Lili, Gibali, Aviv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299060/ https://www.ncbi.nlm.nih.gov/pubmed/30839892 http://dx.doi.org/10.1186/s13660-018-1941-2 |
Ejemplares similares
-
A modified subgradient extragradient method for solving monotone variational inequalities
por: He, Songnian, et al.
Publicado: (2017) -
Picard iterations for strongly accretive and strongly pseudocontractive Lipschitz maps
por: Chidume, C E
Publicado: (2000) -
Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces
por: Chidume, C E, et al.
Publicado: (2015) -
On the Weak Convergence of the Extragradient Method for Solving Pseudo-Monotone Variational Inequalities
por: Vuong, Phan Tu
Publicado: (2018) -
An example on the Mann iteration method for Lipschitz pseudocontractions
por: Mutangadura, S A, et al.
Publicado: (2000)