Cargando…
Population Structure, Antibiotic Resistance, and Uropathogenicity of Klebsiella variicola
Klebsiella variicola is a member of the Klebsiella genus and often misidentified as Klebsiella pneumoniae or Klebsiella quasipneumoniae. The importance of K. pneumoniae human infections has been known; however, a dearth of relative knowledge exists for K. variicola. Despite its growing clinical impo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299229/ https://www.ncbi.nlm.nih.gov/pubmed/30563902 http://dx.doi.org/10.1128/mBio.02481-18 |
Sumario: | Klebsiella variicola is a member of the Klebsiella genus and often misidentified as Klebsiella pneumoniae or Klebsiella quasipneumoniae. The importance of K. pneumoniae human infections has been known; however, a dearth of relative knowledge exists for K. variicola. Despite its growing clinical importance, comprehensive analyses of K. variicola population structure and mechanistic investigations of virulence factors and antibiotic resistance genes have not yet been performed. To address this, we utilized in silico, in vitro, and in vivo methods to study a cohort of K. variicola isolates and genomes. We found that the K. variicola population structure has two distant lineages composed of two and 143 genomes, respectively. Ten of 145 K. variicola genomes harbored carbapenem resistance genes, and 6/145 contained complete virulence operons. While the β-lactam bla(LEN) and quinolone oqxAB antibiotic resistance genes were generally conserved within our institutional cohort, unexpectedly 11 isolates were nonresistant to the β-lactam ampicillin and only one isolate was nonsusceptible to the quinolone ciprofloxacin. K. variicola isolates have variation in ability to cause urinary tract infections in a newly developed murine model, but importantly a strain had statistically significant higher bladder CFU than the model uropathogenic K. pneumoniae strain TOP52. Type 1 pilus and genomic identification of altered fim operon structure were associated with differences in bladder CFU for the tested strains. Nine newly reported types of pilus genes were discovered in the K. variicola pan-genome, including the first identified P-pilus in Klebsiella spp. |
---|