Cargando…

Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift

BACKGROUND: It is still uncertain how surgical reconstruction of the anterior cruciate ligament (ACL) is able to restore rotatory laxity of the involved joint. The desired amount of restraint applied by the ACL graft, as compared with the healthy knee, has not been fully clarified. PURPOSE: To quant...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaffagnini, Stefano, Signorelli, Cecilia, Grassi, Alberto, Hoshino, Yuichi, Kuroda, Ryosuke, de SA, Darren, Sundemo, David, Samuelsson, Kristian, Musahl, Volker, Karlsson, Jon, Sheean, Andrew, Burnham, Jeremy M., Lian, Jayson, Smith, Clair, Popchak, Adam, Herbst, Elmar, Pfeiffer, Thomas, Araujo, Paulo, Oostdyk, Alicia, Guenther, Daniel, Ohashi, Bruno, Irrgang, James J., Fu, Freddie H., Nagamune, Kouki, Kurosaka, Masahiro, Marcheggiani Muccioli, Giulio Maria, Lopomo, Nicola, Raggi, Federico, Svantesson, Eleonor, Hamrin Senorski, Eric, Bjoernsson, Haukur, Ahlden, Mattias, Desai, Neel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299314/
https://www.ncbi.nlm.nih.gov/pubmed/30574514
http://dx.doi.org/10.1177/2325967118812364
_version_ 1783381456417980416
author Zaffagnini, Stefano
Signorelli, Cecilia
Grassi, Alberto
Hoshino, Yuichi
Kuroda, Ryosuke
de SA, Darren
Sundemo, David
Samuelsson, Kristian
Musahl, Volker
Karlsson, Jon
Sheean, Andrew
Burnham, Jeremy M.
Lian, Jayson
Smith, Clair
Popchak, Adam
Herbst, Elmar
Pfeiffer, Thomas
Araujo, Paulo
Oostdyk, Alicia
Guenther, Daniel
Ohashi, Bruno
Irrgang, James J.
Fu, Freddie H.
Nagamune, Kouki
Kurosaka, Masahiro
Marcheggiani Muccioli, Giulio Maria
Lopomo, Nicola
Raggi, Federico
Svantesson, Eleonor
Hamrin Senorski, Eric
Bjoernsson, Haukur
Ahlden, Mattias
Desai, Neel
author_facet Zaffagnini, Stefano
Signorelli, Cecilia
Grassi, Alberto
Hoshino, Yuichi
Kuroda, Ryosuke
de SA, Darren
Sundemo, David
Samuelsson, Kristian
Musahl, Volker
Karlsson, Jon
Sheean, Andrew
Burnham, Jeremy M.
Lian, Jayson
Smith, Clair
Popchak, Adam
Herbst, Elmar
Pfeiffer, Thomas
Araujo, Paulo
Oostdyk, Alicia
Guenther, Daniel
Ohashi, Bruno
Irrgang, James J.
Fu, Freddie H.
Nagamune, Kouki
Kurosaka, Masahiro
Marcheggiani Muccioli, Giulio Maria
Lopomo, Nicola
Raggi, Federico
Svantesson, Eleonor
Hamrin Senorski, Eric
Bjoernsson, Haukur
Ahlden, Mattias
Desai, Neel
author_sort Zaffagnini, Stefano
collection PubMed
description BACKGROUND: It is still uncertain how surgical reconstruction of the anterior cruciate ligament (ACL) is able to restore rotatory laxity of the involved joint. The desired amount of restraint applied by the ACL graft, as compared with the healthy knee, has not been fully clarified. PURPOSE: To quantify the ability of single-bundle anatomic ACL reconstruction using hamstring tendons in reducing the pivot-shift phenomenon immediately after surgery under anesthesia. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: An inertial sensor and image analysis were used at 4 international centers to measure tibial acceleration and lateral compartment translation of the knee, respectively. The standardized pivot-shift test was quantified in terms of the side-to-side difference in laxity both preoperatively and postoperatively with the patient under anesthesia. The reduction in both tibial acceleration and lateral compartment translation after surgery and the side-to-side difference were evaluated using the Wilcoxon signed-rank test. Alpha was set at P < .05. RESULTS: A total of 107 patients were recruited for the study, and data were available for 89 patients. There was a statistically significant reduction in quantitative rotatory knee laxity between preoperatively (inertial sensor, 2.55 ± 4.00 m/s(2); image analysis, 2.04 ± 2.02 mm) and postoperatively (inertial sensor, –0.54 ± 1.25 m/s(2); image analysis, –0.10 ± 1.04 mm) between the involved and healthy joints, as measured by the 2 devices (P < .001 for both). Postoperatively, both devices detected a lower rotatory laxity value in the involved joint compared with the healthy joint (inertial sensor, 2.45 ± 0.89 vs 2.99 ± 1.10 m/s(2), respectively [P < .001]; image analysis, 0.99 ± 0.83 vs 1.09 ± 0.92 mm, respectively [P = .38]). CONCLUSION: The data from this study indicated a significant reduction in the pivot shift when compared side to side. Both the inertial sensor and image analysis used for the quantitative assessment of the pivot-shift test could successfully detect restoration of the pivot shift after anatomic single-bundle ACL reconstruction. Future research will examine how pivot-shift control is maintained over time and correlation of the pivot shift with return to full activity in patients with an ACL injury.
format Online
Article
Text
id pubmed-6299314
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-62993142018-12-20 Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift Zaffagnini, Stefano Signorelli, Cecilia Grassi, Alberto Hoshino, Yuichi Kuroda, Ryosuke de SA, Darren Sundemo, David Samuelsson, Kristian Musahl, Volker Karlsson, Jon Sheean, Andrew Burnham, Jeremy M. Lian, Jayson Smith, Clair Popchak, Adam Herbst, Elmar Pfeiffer, Thomas Araujo, Paulo Oostdyk, Alicia Guenther, Daniel Ohashi, Bruno Irrgang, James J. Fu, Freddie H. Nagamune, Kouki Kurosaka, Masahiro Marcheggiani Muccioli, Giulio Maria Lopomo, Nicola Raggi, Federico Svantesson, Eleonor Hamrin Senorski, Eric Bjoernsson, Haukur Ahlden, Mattias Desai, Neel Orthop J Sports Med Article BACKGROUND: It is still uncertain how surgical reconstruction of the anterior cruciate ligament (ACL) is able to restore rotatory laxity of the involved joint. The desired amount of restraint applied by the ACL graft, as compared with the healthy knee, has not been fully clarified. PURPOSE: To quantify the ability of single-bundle anatomic ACL reconstruction using hamstring tendons in reducing the pivot-shift phenomenon immediately after surgery under anesthesia. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: An inertial sensor and image analysis were used at 4 international centers to measure tibial acceleration and lateral compartment translation of the knee, respectively. The standardized pivot-shift test was quantified in terms of the side-to-side difference in laxity both preoperatively and postoperatively with the patient under anesthesia. The reduction in both tibial acceleration and lateral compartment translation after surgery and the side-to-side difference were evaluated using the Wilcoxon signed-rank test. Alpha was set at P < .05. RESULTS: A total of 107 patients were recruited for the study, and data were available for 89 patients. There was a statistically significant reduction in quantitative rotatory knee laxity between preoperatively (inertial sensor, 2.55 ± 4.00 m/s(2); image analysis, 2.04 ± 2.02 mm) and postoperatively (inertial sensor, –0.54 ± 1.25 m/s(2); image analysis, –0.10 ± 1.04 mm) between the involved and healthy joints, as measured by the 2 devices (P < .001 for both). Postoperatively, both devices detected a lower rotatory laxity value in the involved joint compared with the healthy joint (inertial sensor, 2.45 ± 0.89 vs 2.99 ± 1.10 m/s(2), respectively [P < .001]; image analysis, 0.99 ± 0.83 vs 1.09 ± 0.92 mm, respectively [P = .38]). CONCLUSION: The data from this study indicated a significant reduction in the pivot shift when compared side to side. Both the inertial sensor and image analysis used for the quantitative assessment of the pivot-shift test could successfully detect restoration of the pivot shift after anatomic single-bundle ACL reconstruction. Future research will examine how pivot-shift control is maintained over time and correlation of the pivot shift with return to full activity in patients with an ACL injury. SAGE Publications 2018-12-18 /pmc/articles/PMC6299314/ /pubmed/30574514 http://dx.doi.org/10.1177/2325967118812364 Text en © The Author(s) 2018 http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (http://www.creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Article
Zaffagnini, Stefano
Signorelli, Cecilia
Grassi, Alberto
Hoshino, Yuichi
Kuroda, Ryosuke
de SA, Darren
Sundemo, David
Samuelsson, Kristian
Musahl, Volker
Karlsson, Jon
Sheean, Andrew
Burnham, Jeremy M.
Lian, Jayson
Smith, Clair
Popchak, Adam
Herbst, Elmar
Pfeiffer, Thomas
Araujo, Paulo
Oostdyk, Alicia
Guenther, Daniel
Ohashi, Bruno
Irrgang, James J.
Fu, Freddie H.
Nagamune, Kouki
Kurosaka, Masahiro
Marcheggiani Muccioli, Giulio Maria
Lopomo, Nicola
Raggi, Federico
Svantesson, Eleonor
Hamrin Senorski, Eric
Bjoernsson, Haukur
Ahlden, Mattias
Desai, Neel
Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift
title Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift
title_full Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift
title_fullStr Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift
title_full_unstemmed Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift
title_short Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift
title_sort anatomic anterior cruciate ligament reconstruction using hamstring tendons restores quantitative pivot shift
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299314/
https://www.ncbi.nlm.nih.gov/pubmed/30574514
http://dx.doi.org/10.1177/2325967118812364
work_keys_str_mv AT zaffagninistefano anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT signorellicecilia anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT grassialberto anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT hoshinoyuichi anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT kurodaryosuke anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT desadarren anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT sundemodavid anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT samuelssonkristian anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT musahlvolker anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT karlssonjon anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT sheeanandrew anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT burnhamjeremym anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT lianjayson anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT smithclair anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT popchakadam anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT herbstelmar anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT pfeifferthomas anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT araujopaulo anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT oostdykalicia anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT guentherdaniel anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT ohashibruno anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT irrgangjamesj anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT fufreddieh anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT nagamunekouki anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT kurosakamasahiro anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT marcheggianimuccioligiuliomaria anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT lopomonicola anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT raggifederico anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT svantessoneleonor anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT hamrinsenorskieric anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT bjoernssonhaukur anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT ahldenmattias anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift
AT desaineel anatomicanteriorcruciateligamentreconstructionusinghamstringtendonsrestoresquantitativepivotshift