Cargando…

Truncal changes in children with mild limb length inequality: a surface topography study

BACKGROUND: Limb length Inequality (LLI) in children and adults may affect posture, gait, and several truncal parameters, and it can cause spinal scoliosis. In literature, however, there is a paucity of assessment of truncal and spinal changes due to mild LLI in children. This report presents childr...

Descripción completa

Detalles Bibliográficos
Autores principales: Grivas, Theodoros B., Angouris, Konstantinos, Chandrinos, Michail, Kechagias, Vasilios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299581/
https://www.ncbi.nlm.nih.gov/pubmed/30599038
http://dx.doi.org/10.1186/s13013-018-0173-z
Descripción
Sumario:BACKGROUND: Limb length Inequality (LLI) in children and adults may affect posture, gait, and several truncal parameters, and it can cause spinal scoliosis. In literature, however, there is a paucity of assessment of truncal and spinal changes due to mild LLI in children. This report presents children with LLI, and it aims to provide information in pelvic imbalance, spinal posture, and scoliotic curve, using surface topography analysis which is a novel methodological approach for this condition. STUDY DESIGN: This is an ongoing prospective research study on patient series suffering LLI. MATERIAL AND METHOD: Twenty children, attending the Scoliosis Clinic of the department, 7 boys, 13 girls, 9–15 years old, range 7.5–15, mean 15.5 years, having mild LLI, were assessed. The LLI was 0.5 to 2 cm, mean 1.2 cm. There was not any post-traumatic LLI. We evaluated the LLI in correlation to pelvic and spinal posture parameters. The 4D Formetric DIERS apparatus (4DF) was used for the surface topography assessment. The following were assessed: in the coronal plane, the coronal imbalance, the pelvic obliquity, the lateral deviation, and the 4DF scoliosis angle; in the sagittal plane, the sagittal imbalance, the 4DF kyphotic angle, the kyphotic apex, the 4DF lordotic angle, the lordotic apex, the pelvic tilt, and the trunk inclination; and in the transverse plane, the pelvis rotation, the pelvic torsion, the surface rotation, and the 4DF vertebral rotation. LLI was measured using a tape. The data were statistically analyzed, and reliability study for the LLI was also performed. RESULTS/DISCUSSION: The LLI was statistically significantly correlated to the 4DF reading of pelvis rotation, pelvic tilt (pelvic obliquity), and surface rotation. The scoliometer readings (angle trunk rotation ATR or trunk inclination ATI) in the lumbar region were statistically significantly correlated to the 4DF readings of pelvic tilt (pelvic obliquity). The normally symmetric truncal parameters were also statistically significantly changed (all these deviating from the line of gravity through the vertebral prominence). Interestingly, LLI was not correlated to the scoliosis angle and the scoliometer reading at the lumbar level. The following 4DF readings are presented: in the coronal plane, the coronal imbalance, pelvic obliquity, lateral deviation, and 4DF scoliosis angle; in the sagittal plane, the sagittal imbalance, kyphotic angle, kyphotic apex, lordotic angle, lordotic apex, pelvic tilt, and trunk inclination; and in the transverse plane, the pelvic rotation, pelvic torsion, surface rotation, and vertebral rotation. CONCLUSIONS: Previous studies have reported the results after simulation of LLI in order to evaluate the effects on the pelvic balance and spinal posture parameters. This report is not a LLI simulation study but it presents the effects of mild LLI on truncal changes in the main cardinal planes in children suffering LLI. These changes undoubtedly affect not only the standing truncal posture but also the gait’s economy as well. As mild LLI affects the pelvic balance and spinal posture parameters, our therapeutic approach is that mild LLI (less than 2.0 cm) has to be corrected using shoe elevation, in order to equalize the pelvic obliquity and, consequently, the spinal posture parameters.