Cargando…
Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the p...
Autores principales: | Kazuhiro, Koshino, Werner, Rudolf A., Toriumi, Fujio, Javadi, Mehrbod S., Pomper, Martin G., Solnes, Lilja B., Verde, Franco, Higuchi, Takahiro, Rowe, Steven P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299742/ https://www.ncbi.nlm.nih.gov/pubmed/30588501 http://dx.doi.org/10.18383/j.tom.2018.00042 |
Ejemplares similares
-
Narrative review of generative adversarial networks in medical and molecular imaging
por: Koshino, Kazuhiro, et al.
Publicado: (2021) -
Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients
por: Werner, Rudolf A., et al.
Publicado: (2022) -
The next era of renal radionuclide imaging: novel PET radiotracers
por: Werner, Rudolf A., et al.
Publicado: (2019) -
The theranostic promise for Neuroendocrine Tumors in the late 2010s - Where do we stand, where do we go?
por: Werner, Rudolf A., et al.
Publicado: (2018) -
Plasma Fluoride Level and Femoral Bone Mineral Density in Post-Menopausal Women
por: Santhanam, Prasanna, et al.
Publicado: (2016)